开流形相关论文
本文从比较几何和子流形两个方面对Riemann几何进行了研究.讨论了Riemann流形的曲率与拓扑之间的关系.我们应用比较几何的方法......
在本文中,我们主要研究了局部对称黎曼流形中的子流形第二基本形式模长平方的Pinching问题以及曲率有下界的完备开流形的拓扑,得到了......
本文中,我们应用比较几何的方法研究开流形的Excess与其拓扑之间的关系.我们证明了对于一个曲率下有界的开流形,当它的Excess被其......
在这份报纸,我们由使用比较几何学的方法学习在开的 manifolds 和他们的拓扑学的过量之间的关系。我们证明弯曲否定地降低的与 Ricc......
我们证明了对于具有非负Ricci曲率,大体积增长且内半径下有界的完备n维Riemann流形,只要存在常数C>0使得(Vol[B(p,r)])/(ωnrn)-αM......
In this paper, we prove that if M is an open manifold with nonnegative Ricci curvature and large volume growth, positive......