心电信号分类相关论文
提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网......
随着社会生产力的发展和人们生活水平的提高,心血管疾病逐渐成为人类生活中所面临的最主要的健康杀手之一。在种类众多的心血管疾......
心血管疾病是人类健康的头号杀手,已成为重大的公共卫生问题,及时检测心血管疾病刻不容缓。心电图(Electrocardiogram,ECG)检测是......
心血管病已经成为威胁人类生命健康的主要疾病之一。临床上,心血管病经常伴有心律失常现象发生。有些心律失常可能导致心脏病的症......
本文研究了基于粗糙集与支持向量机的心电信号分类。首先提到了心电信号的基础知识和粗糙集的基本理论和应用状况,然后以统计学习......
心血管疾病是威胁人类健康的第一大杀手。由于心血管疾病具有突发性和高危险性,因此对患者的心电信号进行实时动态监测显得尤为重......
心血管疾病被世界卫生组织列为人口死亡的首要死因,为了在临床医疗中更好地检测心血管疾病,心电图作为一种无创性的诊断工具被广泛......
近年来,经济的快速发展导致人们生活节奏不断加快。日益增大的生活压力,生活方式不规律,导致心脏病的发病率急剧上升,向年轻化发展......
针对传统的心电信号分类方法中存在模型复杂度较高且训练时间长等问题,提出深度迁移分类方法。预先使用ImageNet数据集在VGG-16网......
心电图(ECG)信号基本上与人体心脏的电活动相对应,所以心电图通常在医疗领域被用来检测心血管疾病。通过计算机对心电信号进行自动......
心电分类是一种复杂的模式识别问题。目前,大部分基于不同机器学习模型的心电分类方法都取得了很高的分类精度,但学习效率不高,因......
针对长时海量心电信号自动分类系统中,心电专家诊断费时、费力和成本高,心电信号形态复杂导致特征提取困难,异常诊断模型适应性差......
针对复杂非线性多通道时变信号模式分类问题,提出了一种集成卷积神经网络(CNN)与随机森林(RF)相融合的方法。该方法以CNN为基学习......
提出了一种以心电信号形态特征为基础,基于信号分段特征提取,结合三阶贝塞尔函数和自组织神经网络的心电信号分类方法。首先分析了心......
提出一种基于深度置信网络(DBN)的心电信号分类方法。在对心电信号进行滤波等预处理后,构建一个DBN,由高斯-伯努利和伯努利-伯努利......