标量化定理相关论文
向量优化问题解的性质研究是向量优化理论与方法研究领域中十分重要的研究方向之一.目前为止,一般拓扑线性空间中向量优化问题解的......
向量优化问题解的性质研究是向量优化理论与方法研究领域中十分重要的研究方向之一.目前为止,一般拓扑线性空间中向量优化问题解的......
向量优化问题的近似解研究是向量优化理论与方法研究领域中十分重要的研究方向之一.利用改进集或假定B在统一的框架下研究向量优化......
本文在序线性空间中研究了E-凸集、E-凸函数、E-凸规划等若干问题。首先在实线性空间中定义了E-凸集并讨论了E-凸集的基本性质。随......
在Hausdorff局部凸拓扑线性空间中考虑约束集值优化问题(VP)的ε-强有效性.在内部锥类凸假设下,利用凸集分离定理,分别建立了关于......
引入了集值映射向量优化问题的αe-弱有效解、e-真有效解、e-真鞍点概念,在近似广义C-次似凸条件下,建立了e-真有效解的标量化定理......
在序线性空间中,引入近次似凸集值映射向量优化问题的数学模型.利用近次似凸集值映射下的择一性定理,在弱有效解意义下,建立了序线......
本文对标量化问题的一个重要定理[1]在线性拓扑空间中给予了证明,从而使该定理应用到线性拓扑空间.......
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于......
本文引进了集值映射向量优化问题的ε-超有效解概念,并在集值映射为近似广义锥次似凸的假设下,建立了关于ε-超有效解的标量化定理......
利用标量化定理把向量优化的最优性条件转化为数量优化问题的最优性条件。得到了一类带B-不变凸函数的向量优化问题的最优性条件。......
在局部凸拓扑线性空间中,提出了集值向量优化问题的弱S-有效解和S-次似凸性概念.在S-次似凸性假设下建立了择一性定理,并利用择一......