约化方程相关论文
近年来,由于非线性科学在各个研究领域发展迅速,非线性偏微分方程的求解问题也随之成为热点.目前已经有许多学者提出了一些求解方......
将优化系统的概念推广应用至切代数,并以一个二阶非线性演化方程为例,给出了方程所容许的切对称,建立了切对称的一维优化系统.并利......
19世纪以来,随着非线性偏微分方程在现实生活中的广泛运用,对非线性偏微分方程求解问题的研究已逐渐成为热点。然而,求解非线性偏微分......
本文利用了Lie对称的方法研究分数阶偏微分方程.分数阶偏微分方程被广泛的用来构建力学系统、信号处理、热力学系统以及系统识别等......
本文提出了微分差分非局部对称法,用于求解非线性微分差分方程的对称.本文以两类Toda晶格方程为例,应用非局部对称法分别得到了这两......
对称群方法对可用IST方法求解的可积系统的完全分类是一种很有效的方法,规范等价系统的解、守恒律等以一种明显的方式联系着,而我们已证......
利用微扰对称方法和经典李群方法的结合,研究了含三阶群速度色散(GVD)的非线性薛定谔方程,得到了该方程关于高阶微扰的近似解和约化常......
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清......