低温GaN插入层对AlGaN/GaN二维电子气特性的改善

来源 :第十七届全国化合物半导体材料微波器件和光电器件学术会议 | 被引量 : 0次 | 上传用户:alex709
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  利用低压MOCVD技术在蓝宝石衬底上生长了AlGaN/GaN二维电子气(2DEG)材料,在GaN生长中插入一层低温GaN,并研究了低温GaN插入层对二维电子气输运特性的影响。使用原子力显微镜(AFM)和非接触霍尔测试仪测量了材料的表面形貌和电学特性,发现低温GaN插入层可以改善材料表面平整度并使AlGaN/GaN2DEG的电子迁移率有明显提高,GaN插入层温度为860℃的样品2DEG的电子迁移率达到2110 cm2/V.s。
其他文献
功率放大器是无线通讯收发系统中最消耗功率的器件之一,设计一款高效率的功率放大器对于提高无线收发系统的效率具有重要意义。根据本实验室的AlGaN/GaN HEMI器件的测量结果,利用Agilent lCCAP软件对器件进行了小信号和大信号的提参和建模,并根据建立的模型利用Agilent ADS仿真软件设计了一款基于AlGaN/GaN HEMT器件的逆F类功率放大器。设计过程中,提出了在输入端加入一种
采用金属有机化学气相沉积(MOCVD)方法,在GaN自支撑衬底上同质外延生长了GaN薄膜,得到高质量的GaN外延薄膜。X射线衍射(XRD)结果显示其(002)面摇摆曲线半高宽小于100弧秒,原子力显微镜(AFM)照片上能看到连续的二维台阶流形貌,其表面租糙度小于0.5nm,其位错密度低于l06cm-3。
GaN HEMI微波内匹配大功率器件,因其具有体积小、重量轻、输出功率大、工作温度高等方面的优势,将在各类通信、雷达、导航等设备中得到了广泛的应用,特别是在航空、航天、相控阵雷达等特殊领域要求整机小型化方面,具有较大的应用前景。然而,在内匹配测试过程中涉及到的步骤繁琐,牵连到的设备众多且需要实时记录各类数据,致使其测试严重的滞后整个流程。因此,该文章描述了一种自行研制的自动化的,针对于GaN HE
通过一维Poisson-Schrǒdinger方程自洽求解,得出AlGaN/GaN/AlGaN双异质结导带结构和二维电子气的分布。与单异质结相比,AlGaN/GaN/AlGaN双异质结构大大提高了GaN沟道层下方的势垒高度,使得二维电子气的限域性显著提高。为了提高材料的结晶质量和电学特性,文中采用AlGaN和GaN相结合作为缓冲层,即先生长700nm GaN缓冲层再生长600rim Al0.07G
基于AlGaN/GaN异质结构材料,制备了击穿电压为1050V,特征通态电阻为4.0 mncm2的电力电子器件。研究了不同场板长度对器件电学性能的影响,发现场板长度对器件的直流特性和特征通态电阻影响较小,对器件的击穿电压影响较大。通过优化场板长度,获得了击穿电压为l050V的电力电子器件,此时器件的特征通态电阻为4.0 mΩ。cm2,是相同击穿电压SiMOSFET的电阻的二十分之一。本文结果证明了
本文通过一维Poisson-Schrōdinger自洽求解,计算了AlGaN/AlN/AlGaN/GaN异质结导带结构和电子气的分布。研究了AlGaN渐变沟道层对能带结构和电子气分布的影响,并对不同条件下电子在不同子带上的分布进行了计算与分析。从计算结果可以看出增大AlGaN渐变层的A1组分以及增大渐变层的厚度都会改变沟道的能带,并使电子向衬底方向扩展,改变电子的分布。
本文采用原子层沉积技术(ALD),在AlGaN/GaN异质结构上制备了10nm Al2O3栅介质层AlGaN/GaN MOS-HFET器件。该器件阈值电压为-12V、最大沟道电流为880mA/mm、最大跨导为110meS/mm.通过将其同AlGaN/GaN HFET器件电学特性进行对比,发现Al2O3介质层的插入降低了栅极漏电流,增加了最大饱和沟道电流。同时由于棚介质电容的存在,MOS-HFET器
本文采用磁控溅射法在n-GaN衬底上成功制备了NiO薄膜,从而制备了p-NiO/n-GaN异质结发光二极管。测试并分析了NiO薄膜材料的结构、光学、电学特性。研究结果显示了NiO材料具有良好的结晶质量并呈现p型导电特性。电流-电压(I-V)特性测试结果显示了该p-NiO/n-GaN异质结发光二极管典型具有典型的整流特性,开启电压大约2.2V。在正向偏压下,该二极管室温下发出明显的紫外光,发光中心位
用普通的化学气相沉积(CVD)技术,在高温真空管式炉中利用金属镓与氨气的反应在硅纳米孔柱阵列(Si-NPA)表面沉积GaN纳米结构。用场发射扫描电镜(FESEM)来研究其形貌;X射线衍射(XRD)表明氮化镓为六方纤锌矿结构:氮化镓在大约360 nm处出现本征峰,同时还有位于550 nm处的宽的黄光峰:电致发光图谱显示,它在大约550 nm和810nm处均有一个发光峰,随着电压的增大,810 nm处
采用双能态离子注入法向MOCVD生长的n-型。p-型和非有意掺杂的GaN薄膜中注入了稀土元素Yb,并对样品进行了900℃的快速热退火处理。研究了样品的结构和磁学性质,在X射线衍射的检测极限范围内未发现样品中有第二相出现,拉曼散射结果表明离子注入引入的晶格缺陷不能通过快速热退火完全消除。GaN:Yb样品退火后都表现出室温铁磁性,p-型掺杂有助于增强其铁磁性能。