【摘 要】
:
该文针对[1]中的e←→σ←→e神经网络模式,采用[1]中的微分方程模型,给出三个假设条件,用奇异摄动理论的几何方法将相流分成慢变和快变过程,证明只要三个假设条件成立,e←→
论文部分内容阅读
该文针对[1]中的e<,1>←→σ←→e<,2>神经网络模式,采用[1]中的微分方程模型,给出三个假设条件,用奇异摄动理论的几何方法将相流分成慢变和快变过程,证明只要三个假设条件成立,e<,1>←→σ←→e<,2>系统应存在反相解;然后文章分析研究反相解的性态,得到一很好的区域--P<*>-起跳区,激发神经元e一旦进入此区域,均会在T<*>时刻到达P<*>点并由此点跳上到激发态.根据P<*>-起跳区的性质,文中用后继函数法分析并给出激发神经元e能进入P<*>-起跳区的性质,文中用后继函数法分析并给出激发神经元e能进入P<*>-起跳区所需的条件,然后根据此条件就不同的初始条件分析研究反相解的周期性,得到主要结论:不管初始条件如何,系统一定存在周期性的反相解,与控制慢抑制神经元衰减率的参数K<,σ>无关,K<,σ>只是决定两个激发神经元是否会沿着相同的闭轨运动,以及闭轨的位置是否与初始条件有关.
其他文献
该文讨论几类非线性高阶发展方程(组)初边值问题、Cauchy问题和抽象初值问题整体解的存在唯一性、解的渐近性以及整体解的不存在性,主要结果有以下五部分内容.在第二章中,利用
引言rn艺术设计设计素描教学体系对于我国艺术教学的发展与创新 具有重要意义.随着我国艺术教学的发展,越来越多的艺术教学课程被加入到了实践教学当中,艺术教学的深度与知识
该文研究了系数为时变的线性随机系统的随机精确能控性,并给出了随机精确能控的两个充要条件;这些问题都是从BSDE的观点出发来研究的.另外该文还提出了线性随机系统能控性指
该文研究粘弹性系统稳定性问题.该文研究的主要问题和结果如下:在第1章中,我们讨论具有局部K-V阻尼的Timoshenko悬臂梁的能量指数衰减问题,导出了描述梁的横向和剪切振动的如
格是序结构和代数结构的结合体.从布尔格在命题演算和开关理论中的重要作用可以看出格的重要.近年来由于有序理论在组合数学、Fuzzy数学中的广泛应用,使得格理论逐步发展成为
Bezier曲线曲面在自由曲线、曲面的造型设计中具有广泛的应用及重要的地位,它与隐式代数曲线、曲面表示一起,成为曲线曲面造型最重要的技术之一.隐式曲线曲面的参数化和参数
该文以石油工程中的非直井(定向井、水平井、侧钻井、侧钻水平井、大位移井、分支井)轨迹控制为背景,研究了一类约束优化与最优控制问题.该文主要研究内容及取得的成果可列为
该文的主要目的是将三种迭代法应用于求解Sylvester方程.数值例子表明,对于系数矩阵A,B满足一定条件的Sylvester方程,该文所给出的三种迭代方法是有效的.该文首先将Sylvester
随着我国经济建设的迅速发展,社会各行业对人才的需求也在不断变化,主要关注点是人才综合指标和创新能力.而创新是一个国家发展的不竭动力,大学生是创新思维最活跃的青年群体
该文试图解决一般情形下的非交换KP系列及其对应约束下的cKP系列的求解问题和它们的双Hamiltonian结构.在第二章中我们首先简单介绍了一下非交换线性代数的有关背景,引入了"