【摘 要】
:
函数的自复合被称为迭代,它是泛函方程中的核心运算之一,也是动力系统理论中的基本概念.本文将关注迭代泛函方程中的两类重要问题,即迭代根的存在性问题和迭代泛函微分方程的周期解问题.迭代根可以被看作是一种特殊的迭代,即分数次迭代.由于其涉及到嵌入流和插值计算等问题,函数的迭代根吸引了众多学者的注意.他们针对不同类型映射的迭代根给出了丰富的结果,特别是对所有单调函数利用逐段定义法证明了其迭代根的存在性.然
论文部分内容阅读
函数的自复合被称为迭代,它是泛函方程中的核心运算之一,也是动力系统理论中的基本概念.本文将关注迭代泛函方程中的两类重要问题,即迭代根的存在性问题和迭代泛函微分方程的周期解问题.迭代根可以被看作是一种特殊的迭代,即分数次迭代.由于其涉及到嵌入流和插值计算等问题,函数的迭代根吸引了众多学者的注意.他们针对不同类型映射的迭代根给出了丰富的结果,特别是对所有单调函数利用逐段定义法证明了其迭代根的存在性.然而,集值函数迭代根的存在性问题更加复杂,有迭代根不存在的可能,这是一个十分有意思的情形,也将是本文的重点研究内容之一.另一方面,在迭代泛函方程中加入微分就得到了迭代泛函微分方程.这类方程在控制论与生物数学等理论中有重要地位,其周期解往往意味着系统的周期振荡规律与种群数量的周期变化规律.因此,关于迭代泛函微分方程周期解的研究得到了越来越多人的关注.本文将研究一类迭代泛函微分方程周期解的存在唯一性与稳定性.具体内容如下:第一部分,我们关注集值函数迭代根的不存在性.集值函数是允许一对多的函数,其函数值可以是一个集合.经典结果表明,与通常的函数不同,即使在单调情形下集值函数的迭代根也可能不存在.这是一个十分有意思的现象,促使我们寻找更多不存在迭代根的集值函数.因此,在前人讨论一个集值点情形的基础上,我们将在本章中研究具有两个集值点函数的迭代根.与前人的工作相比,两个集值点会带来本质性的困难,因为单个集值点处函数值的势≤1在两个集值点情形下不能导出矛盾.这就要求我们寻找更多的条件导出新的矛盾,进而证明带有两个集值点函数迭代根的不存在性.第二部分,我们关注一类非线性迭代泛函微分方程周期解的存在唯一性与稳定性.2006年,Burton提出利用Krasnoselskii不动点定理研究迭代泛函微分方程周期解的思路.随后,Zhao利用该思路解决了变系数非齐次迭代泛函微分方程x’(t)=c1(t)x(t)+c2(t)x2(t)+…+cn(t)xn(t)+F(t)周期解的存在唯一性问题.在本章中,基于Zhao的结果,我们利用Krasnoselskii不动点定理来进一步解决方程x’(t)c1(t)x(t)+c2(t)f(x2(t))+F(t)周期解的存在唯一性与稳定性问题.注意到当未知函数x(t)的二次迭代隐含于函数f中时,该方程称为一个非线性方程.在其证明过程中对积分的估计会更加困难,这迫使我们寻找新的条件以保证对积分的有效估计.
其他文献
可持续物流设施选址问题的多目标优化方法研究具有十分重要的理论意义和应用价值.由于客户满意度是物流公司的一种潜在价值,对公司的可持续性发展作用重大,因此提高客户的满意度问题成为可持续物流设施选址问题中的关键问题之一.本文首先针对Tang等人提出的可持续物流设施选址多目标优化模型进行改进,通过引入满意度函数衡量客户对物流公司提供服务的满意程度及企业的可持续发展能力,构建以成本最小、客户平均满意度最大和
T-S模糊模型是用多个线性系统来拟合同一非线性系统,它可以用较少的模糊规则来表示高度复杂的非线性系统.而在实际系统中,经常伴有干扰信号和扰动等一类不确定性,这些不确定性影响了系统的稳定,因此采用滑模控制解决这一问题.滑模控制是一种特殊的非线性控制,具有响应速度快、对外部干扰具有不变性的优点,得到了国内外众多学者的关注.近年来,随着对滑模控制的不断深入研究,滑模控制理论得到了进一步完善并广泛应用于各
关于向量优化理论的研究已取得了丰富成果,主要涉及向量优化各种解的概念、最优性条件、标量化、代数性质与拓扑性质以及与向量优化问题密切相关的变分不等式问题等.本文共分为两章,主要研究了两类非线性标量化函数的若干性质,并利用线性标量化方法与非线性标量化方法给出了向量优化问题近似真有效解的稠密性结果.主要内容安排如下:第一部分研究了Minkowski泛函和一类特殊的非线性标量化函数-△函数的基本性质.首先
向量优化问题就是在一定条件下极大化或极小化向量值函数,这一问题的研究涉及非光滑分析、凸分析、泛函分析等多门学科领域,吸引了许多学者的研究.Co-radiant集和标量化函数是研究向量优化的重要工具,其中co-radiant集是向量优化问题统一解研究的基本工具.本文首先在抽象凸的框架下研究了这两类特殊的集合:radiant集和co-radiant集的性质,利用Minkowski泛函给出了radian
非凸优化问题广泛出现在稀疏优化、压缩感知、数据挖掘、图像去噪及机器学习等众多实际前沿问题中,交替方向乘子法是有效求解凸优化问题的迭代算法,当目标函数为非凸的情况时,该算法的收敛性或许无法保证.本文主要研究了求解带线性等式约束的两类非凸可分优化问题的两类改进的交替方向乘子法.研究内容如下:第一部分,针对一类三块可分非凸优化问题,提出了一类正则化交替方向乘子法.首先,本文建立了该算法的全局收敛性.其次
随着社会的不断发展,特别是信息技术和人工智能的飞速发展,人们的学习方式和思维方式得到很大程度上的改变。为了能给社会提供更多促进时代发展的人才,培养学生的高阶思维就显得尤为重要。数学作为基础教育阶段最重要的学科之一,理应在数学课程的教学中培养学生的数学高阶思维。本研究在文献分析的基础上,根据数学高阶思维分别在敏捷性、灵活性、深刻性、批判性和创造性五个方面上的表现形式,对数学高阶思维进行了描述性界定,
随着时代的发展,社会对人的要求随之改变,互联网大数据时代下更加注重深度学习的能力。在这一大背景下教育理念也应随之转变,重视培养深度学习的能力,并将深度学习的理念作为指导教学活动的重要依据。此外,《普通高中数学课程标准(2017版)》提出数学核心素养,数学核心素养是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现,这与深度学习强调思维与情感不谋而合。显然,深度学习有助于核心素养的
由于二维系统的复杂性,许多学者将目光聚焦在二维系统的研究上.在实际应用中二维系统的研究结果被广泛应用于图像处理、通信安全、智能控制等领域.目前,大多数学者在研究二维切换系统的稳定性和同步问题时,都没有考虑切换过程中的转移概率.然而,整个系统中不同模态被激活的概率不同,对整个系统动态行为的影响也不相同.显然,这些很少被激活的模态对整个系统动态行为的影响也是非常小的.因此,考虑二维切换系统切换过程中的
在当前的市场中,市场环境愈发不确定,不仅普通产品之间有相互代替的竞争,相应的消费者也越来越讲求策略,物资缺乏、盲目消费的时代已经过去,除了考虑市场需求以及供应商的供应能力,还要结合决策者的行为偏好,若是规避风险型的决策者,其决定将较为保守,若是风险偏好者,则其决策者最终的结果将会受市场需求的波动影响较大。因此,如何减少供应链中的不确定性的影响,从而实现利润最大化是最终目标。一般情况下的市场环境有一
《国家中长期教育改革和发展规划纲要(2010-2020年)》关于普通高中教育改革提出“深入推进课程改革,创造条件开设丰富多彩的选修课,为学生提供更多选择,促进学生全面而有个性的发展”。为了贯彻落实这一重要方针,2018年教育部组织修订并颁布了《普通高中数学课程标准(2017年版)》,将大学先修课程纳入了选修E类课程中。微积分一直以来是世界各国大学数学先修课程的重要内容,因此中国大学先修课程微积分(