概念的定义、理解与应用

来源 :小学教学研究 | 被引量 : 0次 | 上传用户:snmydmyd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】百分数是小学数学教学中的重要内容,且因其丰富的内涵而时常让学生甚至教师感到困惑。本文运用数学分析、认知分析和教学分析的课堂教学研究分析框架深度剖析: 百分数能带单位吗?使教师在理解百分数的“数、比、比率、统计量和算子”五种不同意义的同时,了解学生对百分数概念认知常见的错误类型,并通过百格图等案例澄清如何通过合理的教学任务设计帮助学生建立正确的认知。进一步,本文希望借助百分数这一案例的分析过程,展现如何运用由上述三类分析构成的框架进行其他教学案例分析,从而帮助教师改进教学,逐渐成长为研究型教师。
  【关键词】百分数 数学分析 认知分析 教学分析 百分数教学
  在一次数学教学高级研修班上,与会教师围绕分数和百分数之间的关系展开了一次“特殊”的研讨。讨论围绕以下推理过程展开:
  在现场交流过程中,所有教师认为“吨可以表示为吨”是正确的,而“20%吨”的表示是错误的。通过进一步的分析讨论,教师们对以上推理中的数值计算几乎没有提出质疑,但加上单位后的表述方式是否合理则莫衷一是。
  表面上看,上述问题是分数、以100为分母的分数和百分数之间的相互转化;而这一问题的背后,实际上考查的是教师对分数、百分数概念的理解。为了达到考查目标,我们进一步在教师中询问以下问题:吨、20%吨的表述方法对吗?参与询问的所有教师说吨的表述是正确的,而20%吨的表述是错误的。
  尽管分数有比的含义,但这里教师很明显是将分数看成数量,但却将20%只看作是一个比。所以,20%一定不能带单位。同时,我们在准备这篇文章的过程中,也观摩了几位特级教师关于百分数意义的课例,在这些课例中都一致强调百分数不能带单位,把20%吨是否正确作为一个例子,让学生进行判断。对于百分数能否带单位这个问题,在学生没有任何疑问的情况下,教师一再强调百分数不能带单位。我们的问题是,有必要如此强调百分数不能带单位吗?一方面分数也具有比的含义,教师对于分数带单位毫无疑义,而对于百分数带单位却坚决反对。那么,百分數是不是分数?百分数与分数是否具有共同的数学本质?
  在本文中,我们将继续沿用已有系列文章中的框架,依次从数学分析、认知分析和教学分析三个层面对此教学案例进行探讨。数学分析是从数学的角度出发,讨论以上推理是否合理,合理之处在哪,不合理之处在哪,如何解释或解决。认知分析则探讨教师和学生在碰到类似的问题时,有什么样的认知困难或认知障碍,以及为什么会有这样的困难或障碍。教学分析则是在对数学分析和认知分析的基础上进行教学设计,以帮助学生克服认知困难,实现对这个数学概念的清晰理解。我们的重点是没有必要过分强调百分数不可以带单位,以及过分将百分数与分数分割开来,甚至要过分人为的不把百分数看作是一种特殊的分数。当然,我们并不否定在很多情境下百分数不能带单位的事实。
  一、数学分析
  在小数出现之前,古罗马就出现了倍数的计算,到了中世纪(第5~15世纪),百分数的计算逐渐标准化。直至15世纪后期和16世纪初期,百分数的计算已经成为算术的一部分,应用于涉及盈利、税收等类型的问题。到17世纪,百分数更多地标准化为表示利率的数。
  大约在1650年,百分数的意大利语per cento(每一百中)缩减为百分号“%”,百分号的引入是百分数发展历史上的一个转折点,百分数的表达逐渐脱离具体的基准,其含义更多地倾向于抽象关系(比及比率)。到了19世纪,随着概率论与统计学的发展,各种类型的数据急剧增长。百分数很快成为数据比较的标准方式,百分数的直观表达方式如饼图等也在这个时期出现。
  数学辞海中定义“百分数(percentage)为一种特殊的分数。指分母是100的分数,或表示一个数是另一个数的百分之几的数。百分数分母常用符号‘%’表示,称为百分号,并写成分子与百分号并列的形式。例如5%、1.5%……”。该定义强调百分数是一种特殊的分数,也就是既可以是数,也可以是比。百分数之所以不容易理解,是因为它有多种内涵。根据Parker和Leinhardt(1995)对百分数的内涵界定,百分数至少有五个方面的含义:数、比、比率、统计量和算子五种不同的意义。
  (1)作为数,可以与分数、小数互化。如20%=0.20=。
  (2)作为比,本质是同类量之比,而且同类量的度量选择同一度量单位。例如,某某获得了40%的选票,此处40%意指投给某某的人数与全部投票人数的比为40%。
  (3)作为比率,是另一种比的形式,其指不同类型量之比。 如某品牌汽车的油耗为5.8%(L/km),某一化学液体的质量浓度为3%(g/ml)。
  (4)作为统计量,即用于表示某一特定数量相对于另一数量的相对大小,经常被用于表示人口统计或管理类的统计量。例如,今年的开销增长了12%等。作为统计量的百分数通常有两种用法:①用单独的百分数描述一个特定的比率(如7.5%的失业率);②用两个百分数的比(如相较于国家一月份的失业率7.5%,某省一月份的失业率为8%,由此来比较国家一月份的失业率和某省一月份的失业率)。这两种用法都是为了省略原始统计数据,且更易于解释数据所要表达的含义。
  (5)作为一个算子,反映了自变量(输入值)和因变量(输出值)之间的一个函数关系,在这种情况下,百分数常常揭示两个量之间的线性关系。
  从百分数的定义来分析,它是“表示一个数是另一个数的百分之几的数”,这个定义的本质在于两个数之间的比较,但我们知道,数具有抽象性,就像“1”表示一个苹果、一个人、一头牛等构成的集合在数量方面的共同属性。因此,当我们考虑现实问题或物理问题时,每一个数都与特定的事物相联系,此时的数常以名数的形态出现,如3千米、5克等。当我们考虑被比较的两个对象的物理属性时,就有两种情形:第一种情形,同类量之比,对应于比,由于共同的度量单位相消,最后的比值就不带单位;第二种情形,不同类型量之比,如速度就是路程与时间的比值,单价就是物品总价与物品数量的比值,此时对应于比率,此时的百分数就是带单位的。当然,在现实生活中及现行教材中,百分数更多的都表示同类量的比值,但不同类型量的比值也完全符合百分数的定义。我们没必要一定要把不同类型量的比值从百分数的含义中剔除掉。   尽管百分数的“比率”的内涵与百分数的定义是相容的,但这方面内涵的应用确实是比较少见的。百分数的统计量及算子的内涵,其本质为“比”,因此,百分数最为常见的内涵包括两个方面:第一类作为数的含义,可以带单位;二是作为关系,即比的含义,不带单位。
  二、认知分析
  从认知角度出发,教师们认为上面案例的推理是错误的,可能的原因有三个:①将==20%中的三者均作为数,故而认同三者之间的等量转换;但在推理过程中,将和作为数,20%作为比,从而20%吨的表示是不能接受的,故认为推理是错误的。②将==20%中的三者均作为比,故而同样认同三者之间的比的转换;同样,在推理过程中,20%吨的表示不能接受,从而认为推理错误。③将==20%中的三者均作为数,故而认同三者之间的等量转换;但在推理过程中,将三者又同时作为比,但20%吨的表示不能接受,从而认为推理是错误的。
  我们通过以上的认知分析并结合对百分数意义的课堂观摩发现,绝大多数的教师认为,百分数不能带单位,而且坚定地认为在课堂有必要给学生强调百分数不能带单位。当我们进一步追问百分数不能带单位的原因时,教师们的回答是百分数是一个比。那我们要分析这样的理由是否充分。
  我们先回顾分数的引入,人教版数学三年级上册教材引入“几分之一”时,呈现了这样的问题情境:把这块月饼平均分成4块,每块是它的四分之一,写作;把一个圆平均分成3份,每份是它的三分之一,写作。显然,分数是在比较意义下引入的,它的本质也是一个比,特级教师吴正宪在她的著作《小学数学基本概念解读》中也强调了这一点,她在论述分数与百分数的相同点时,强调百分数与分数的实质是一样的,都表示两个数的倍数关系,这时的分数与百分数没有计量单位,它们都是率。人教版数学五年级下册教材在“分数的意义与性质”的引入中,又呈现了这样的问题情境:把桌上的月饼、苹果平均分给两位同学,每人得到块月饼、个苹果。此时的分数就是作为数来引入的。假如我们把这样的情境改造一下:把桌上的月饼、苹果平均分给两位同学,每人得到50%块月饼、50%个苹果。尽管这样的说法和我们习惯上的说法有一定出入,但这样的说法没有逻辑问题,也没有违背百分数的定义。
  既然分数有比的属性,也有数的属性,可以带单位,那么我们到底承不承认百分数是特殊的分数?数学辞海中已明确地把百分数界定为特殊的分数,吴正宪在对百分数的描述中也采用了辞海中百分数的定义。如果我们承认百分数是分数,那么分数所具有的性质百分数是一定有的。因此,百分数也像分数一样具有比的属性,也具有数的属性。
  再进一步分析,百分数到底能不能带单位,一定要看具体的情境,不能绝对化,不能一再强调百分数就不能带单位,绝对量与相对量之间很容易实现转化。如一瓶盐水重1千克,盐的含量为5%,这瓶盐水中有多少千克盐?这里的盐的含量5%就是一个比,但最后盐水中的盐有5%千克,最后的5%千克就是一个数量。如果说这里5%千克的表示有误,非要写成千克,这又有多大的必要性?如果说仅仅由于百分数是一个比值,它就不能带单位,我们把这个结论绝对化,可能会带来一些滑稽的结果。如,圆周率π就是一个比,现在的问题是半径为1厘米的圆面积为多少,答案就是π平方厘米。如果我们说圆周率是一个比值,不能带单位,那么这个问题该如何解答呢?带不带单位,带什么单位,这是物理学非常关心的问题,在物理学专门有量纲分析,解决的就是单位问题。总之,单位往往是由一个关系式决定的,因此,在数学中考虑单位问题时,一定要分析数学算式的具体情境,针对具体情境才能决定单位的问题。虽然作为比的百分数没有单位,但是它可以作为一个算子,当输入量带单位时,输出量有时尽管还是百分数的形态,但这时输出量已经是一个绝对量了,所以就带了单位。
  而教材在给出百分数定义后,所举的例子也都是同一类型量的两个数之比,此时的确没有单位,那是因为两个比的量的单位被抵消了,而且所有的例题或其他学习材料也都只是突出了百分数作为同一类型量比的形式。因此,才会导致教师产生这样的疑惑。当然,百分數带单位来表示某一数量在生活中确实比较少见。
  百分数作为分母为100的特殊分数,在不同情境下其内涵不同。那么在教学过程中如何正确、多角度地认识百分数,避免理解上的误区呢?下面我们对百分数进行教学方面的分析。
  三、教学分析
  百分数之所以是一个让学生甚至教师感到困惑的概念,其主要原因在于百分数内涵的丰富性。学生能够很好地掌握百分数的程序性知识,但其概念性知识对于学生甚至教师都构成了挑战。然而,教材中举的例子只强调了同一类型量的两个数之比的特性。例如,人教版数学六年级上册教材对百分数的定义为“百分数表示一个数是另一个数的百分之几,如14%表示一个数占另一个数的”,北师大版数学教材的定义与人教版数学教材的定义类似。而苏教版数学教材定义为“像,,这样表示一个数是另一个数的百分之几的数,叫做百分数,百分数又叫做百分比或百分率”及浙教版教学教材的定义为“,,,,这些分数的分母都是100,像这样表示一个数是另一个数的百分之几的数叫百分数。百分数又叫百分比(或百分率)”。通过以上定义我们发现百分数具有数的属性。而且目前的小学数学教学中,有大量的练习题目涉及百分数、小数及分数之间的转化。百分数作为一个数,它是小数和分数的另一种表征形式而已,这种表征有它的优势。因此,我们建议教材在举例时不仅要突出百分数作为比的属性或形式,还应该举一些体现百分数作为数的属性的例子。
  此外,从前面的案例可以发现,目前教学中或许太过强调百分数不能带单位,以至于教师和学生逐渐形成一种思维定式,一提到百分数就只能是两个同类型量的比,完全是一种不同于分数的数,因而一定不能带单位。但根据百分数的五种属性,在教学中教师要使学生形成百分数的概念意象,加强百分数的概念性理解,丰富对百分数内涵的体验,就需要给学生提供丰富而恰当的情境。   从百分数作为数的属性方面来说,以分为单位去度量元,那么1分就是1%元。用百分数表示这种变化率及特定比值的情况比较少见。但也有一些很生动的例子,如某品牌汽车的油耗为5.8%(L/km),某化学液体的质量浓度为3%(g/mL)。
  根据前文对百分数内涵的分析,百分数可以作为一个统计量,如2018年中国GDP比上一年增长6.6%,虽然这里的6.6%来自一个比,但它实际上也是可以直接用于比较大小的数。比如,2017年的中国GDP增长量为6.9%,所以2018年的增长量少于2017年增长量的0.3%。这样的百分数是能够直接用于计算或者进行大小比较的。
  另外,对于百分数作为比的属性,在教学中教师可给学生提供下面的例子,帮助学生体会百分数作为比的含义与数的含义的区别。
  “在星期六售出的雪糕中,有40%是巧克力味的。在星期天售出的雪糕中,有50%是巧克力味的。于是小林说,雪糕店在星期天售出的巧克力味雪糕比在星期六售出的巧克力味雪糕多,因为50%比40%大。你认为小林说的对吗?试加以解释。”
  分析小林的说法,首先要搞清楚这里50%与40%的含义,这里的50%与40%是两个比,分别表示“雪糕店周六巧克力蛋糕的卖出率及周日巧克力蛋糕的卖出率”,这两个卖出率可以比较大小,所以小林说50%比40%大,这个说法是没问题的。但小林的错误在于把“比”看成是数量进行比较,要得到数量,必须还要考虑50%与40%的参照量,即雪糕店周六、周日卖出的巧克力总量。
  因此,教师在教学过程中需要注意,百分数的内涵是丰富的,什么情境下是比,什么情境下是数。只有引导学生认真分析情境,搞清楚每一个情境下百分数的确切内涵,学生才有可能做出正确的判断。而由于担心学生会混淆相对比及数量,一味强调百分数不能带单位的做法是不可取的。
  如果把百分数理解为比,而把比仅限于同类量之间的比,一再强调比不能带单位,这种做法会给以后的教学带来干扰。如,在正比例的学习中,,就是一个比,假如我们给正比例赋予具体情境,如=速度,当速度保持恒定时,距离与时间之间就是一个正比例关系。如果我们一再强调比不能带单位,那么这里的速度就没有单位。
  四、结语
  百分数是小学数学教学中的重要内容,虽然小学阶段对百分数的应用并不多,而且也只在六年级时才开始接触,但作为一类重要的数,教师首先要明确其内涵和意义。借助Parker 和 Leinhardt 的研究结果,提出了百分数的五个方面的内涵,可能有一些小学教师对百分数作为一个数及不同类型量之间的比有质疑。然而,百分数作为数的属性及作为不同类型量之比的属性与百分数的定义是完全相容的。当然,百分数作为一个数及作为不同类型量之比的属性在日常生活中不多见。
  根据其五种内涵,教师在教学过程中应该帮助学生明晰百分数作为比和数的两种属性,而且这两种属性需要依赖问题所在的情境才能进行判断。由于百分数既有数的内涵,又有比的内涵,这就使得学生极容易犯错误,有时会把百分数比的含义理解为数的含义。教师要引领学生认真分析问题情境,结合具体情境厘清百分数的数的含义与比的含义。
  在小学数学课堂教学中,没有必要一再强调百分数不能带单位,一方面这样的强调缺乏充分的依据,有理数从本质上讲就是比,但我们并没有对有理数可以带单位产生过质疑;另一方面,过于强调比不能带單位会给以后的教学带来干扰,尤其不利于学生学习正比例的相关内容。
  本文并不是要强调教师要教给小学生百分数的五种内涵,而是希望通过对案例的分析,帮助教师明晰对百分数内涵的认识,并在遇到类似问题时,能够运用数学分析、认知分析和教学分析这一框架进行其他教学案例的分析,从而从数学的本质、学生学习的特点以及教学设计的角度改进自己的教学,提升学生学习水平,促进自己的专业发展,逐渐成长为研究型教师。
  ①:“游迪”一名取自美国特拉华大学校名的英文缩写(UD),是蔡金法教授(西南大学、University of Delaware)及访问学者共同使用的笔名。作者还包括姚一玲(杭州师范大学教育学院)、贾随军(浙江外国语学院教育学院)、张玲(西南大学数统学院)、刘启蒙(北京师范大学中国基础教育质量监测协同创新中心)、巩子坤(杭州师范大学理学院)、陈雪梅(河北师范大学教师教育学院)、徐冉冉(西南大学数统学院),特别感谢澳门大学江春莲教授提出的宝贵意见。本文是根据蔡金法教授和访问学者们在数学教育讨论班中的若干研讨内容整理而成。这一讨论的最终目的是通过对教学实践案例的研究,让高校的数学教育研究者关注并参与到一线数学教育实践,共同学习和探讨这一过程中产生的问题,让高校的理论研究能够更好地为教学实践进行服务。
  【参考文献】
  [1]《数学辞海》编辑委员会.数学辞海[M].山西教育出版社,2002.
  [2]林夏水.论量的层次性[J].哲学研究,1992(2).
其他文献
● 选择一个所产蛋能达到常规蛋重的蛋鸡品种。  ● 育成期(7周)使用快速递减光照时间的程序。  ● 在小母鸡体重较轻时进行光照刺激。  ● 在分阶段饲养程序中更大幅度地逐渐减少母鸡的能量、蛋氨酸/胱氨酸和总可消化氨基酸的供應量。  ■ 控制蛋重的营养管理与提高蛋重的管理相比更为复杂,且得到结果所需的时间更长。  ■ 降低日粮中蛋氨酸 胱氨酸与赖氨酸的比例(<84%)。这种降低应该逐步进行,以避免
经济合作与发展组织和联合国粮农组织共同编制了2013~2022年农业展望报告。虽然这份展望报告是基于许多假设编制的,但它让我们了解了我们的未来。如何解决前进中遇到的问题将主要取决于我们如何经营我们的农业和食品工业。  人们为预测2022年人类对家畜和鱼类产品的需求而对2010~2012年平均需求量进行了比较,那么在审视这一预测结果时,最值得考虑的因素是什么呢?对于这个问题可能有不同的答案,这取决于
【摘要】阅读教学贯穿于学生整个小学语文学习阶段,是小学语文教学的重要环节,旨在通过大量的阅读,拓宽学生的知识面,加深学生的情感体验,达到主体与文本的自我建构。因此,笔者在课堂中进行同一中心的主题阅读拓展,引导学生在比较阅读的基础上,聚焦语言训练,提升语用能力。  【关键词】同一中心 阅读拓展 语用能力   英国教育家哈里麦多克斯指出:“阅读是一项尤为重要的技能。”新课标基本理念部分也强调:通过大量
【摘要】数学教学的核心任务是“思维”。思维的过程也是个体对客观现实建立理解、深化理解、表达理解的过程。实践中,应立足知识的本源和发展,关注学生的基础与经验,让学生在丰富的生活现实中分析、综合、比较、抽象和概括数学现实,从而获得对数学本质的深层次感悟和理解。   【关键词】数学理解 生活经验 数学思想 数学模型   一、探索:“数学教育”的本色追求   随着课改的不断深入,核心素养开始倍受教育工作者
摘 要:沙门氏菌是全世界中最常见的食源性人畜共患病,且食用动物是非伤寒(人畜共患病)沙门氏菌感染的贮库。通过减少鸟类内脏器官的定植,防止鸡蛋污染,减少粪便脱落,沙门氏菌疫苗可降低公共健康风险,从而减少环境污染。德国罗曼动物保健有限公司推出的最新产品——AviPro沙门氏菌疫苗通过饮用水安全、方便地进入鸟类体内,并避免了自然路径的沙门氏菌交叉感染,深受消费者信赖。  关键词:沙门氏菌;食源性人畜共患
现代养猪业所采用的饲养条件和猪种较以前有很大的不同,因此以早先的猪种和饲养条件获得的营养标准已不适应当今的养猪生产,新版NRC(2012)年的推出适逢其时,并增加了几个新的主题。但是,其否真的能满足现代猪种的需求则也未必,这促使我们有必要全面回顾猪的营养需求。  养猪业是一个动态发展、不断变化的行业,需要考虑许多复杂的会影响动物生长和发育的互作因素。这些因素包括遗传、营养、健康状况、福利、环境、市
足垫皮肤炎或足垫损伤是衡量肉鸡福利的重要指标之一。由于消化不良而造成的垫料潮湿,可能会激发足垫损伤的发生。为了维持足垫的完整性,肉鸡需要提供合理的营养,以确保皮肤的健康,而健康的皮肤可以预防损伤的形成。利用天然态矿物质,再配以免疫增强型产品,可以降低疾病发生的可能性,并可以防止已经出现的病变发生继发感染。  足垫皮肤炎(足垫损伤)是采用垫料饲养的家禽(主要是肉鸡和火鸡)的一项重要的福利指标。由于受
我们上周在俄罗斯度过,这个有趣的国度现在禁止从很多国家进口各种食品,包括猪肉在内。正如我们上周写的,这里的生产者目前每头猪的利润为250美元。上周我们在那里时,这个数字多次被其他生产者反复提及。这是八月的节日。圣诞老人肯定住在俄罗斯?!  俄罗斯的《莫斯科时报》有很多关于食品禁令的评论和观察。我们引用如下:“俄罗斯政客们声称最近对针对西方的进口禁令是对俄罗斯农业的大好机会。但农民和经济学家警告说,
人教版数学四年级上學期第三、四单元测试卷
上周,我们参加了在艾奥瓦州得梅因举办的世界猪肉博览会。年度一次的世界猪肉博览会(World Pork Expo, WPX)组织得很好,很多人踊跃参加。天气非常理想,温度适中,天气晴朗。如果你和我们一样大部分的时间在户外的展位,这是特别好的天气。  1 我们的报告  盈利让生产者感到快乐,这里有很多快乐的生产者。  有一些母猪场正在扩群,空的猪舍正在补栏。  我们在这里和建筑商及其他人交谈,目前新建