论文部分内容阅读
【摘 要】在小学数学的学习中,应用题的占的比率很大。作为低年级数学教学的一线教师,在实际工作中,明显感到随着教育改革的发展,针对小学应用题的教学方法必须要改变,如何转变教学方法,去更好地完成教学目标,是摆在我们每位教师面前的新课题。
【关键词】应用题;引导;培养;推理;假设
在小学数学的学习中,应用题的占的比率很大。而在现实生活中,我们也可以利用所学到的应用题来解决实际的问题。例如,费用的支出和收入、盈亏问题,行程问题,工程问题等等。因此,可以说应用题是生活的需要,无所不有,无处不在。其实应用题的学习是对小学生进行思维训练,培养小学生的数学逻辑思维能力,提高其数学素质。因此,应用题教学是小学数学教学中的一个重点。以下是我的几点看法:
一、引导学生怎样解应用题
1、认真阅读题目。很多学生一直认为只有语文才需要一遍遍地读。数学是一门很省力的科目,不需要怎么花时间读题的。其实这是个很大的误区。数学是一门综合性非常强的科目,对语言的理解能力要求相当高。同时读题也是解决应用题的重要环节,是学生自己感知信息数据的过程。读,看起来是非常简单的事。但数学应用题的读不是泛泛而读,要求的是读通、读透。很多学生之所以做错,其中最主要原因之一就是由于读题时走马观花,完全没有看懂题目问了什么,很随意的就开始动笔,这样的结果往往是做错了题目,甚至有的题目错的非常的离谱,让老师无法理解你是如何做出来的。“书读百遍,其义自见。”应用题也不例外。甚至可以这么说:“与其让学生抄题目,不如让学生认真读题目。”这当中的道理,就像让学生抄不认识的字一样,不论抄多少遍,学生还是同样不认识、不理解。认真的读题,不仅能提高学生的数学意识,而且也使学生的感知能力得到了培养,同时也提高了学生捕捉信息数据的能力,为学生理解题意奠定了初步的基石。
2、圈重点。在做应用题的时候一定要把重点的词圈下来。这里所谓的重点词并不是指同一个词语,因为每个学生的理解能力不同,所以在他们眼中重点的词也是完全不一样的,有多有少,但不管怎么,圈出的词一定要为你做题服务。例如:在教《分数加减法》时,经常会遇到这样的题目,一块地共多少公顷,其中多少种大豆,多少种棉花,其余种玉米,玉米的种植面积占这块地的几分之几?
这道题主要是让你区别给你的分数是分率还是一个数。这个时候我就要求学生必须把有单位名称的数字圈出来,这样可以提醒自己,数和分率是不同的,不可以进行加减法。同时划出“几分之几”明白的告诉学生求的是一个分率,和公顷无关。划是一个很好的习惯,可以提醒学生在今后的思考中注意一些细小的地方,以免出现不该有的错误。
二、培养学生的想象能力。
在应用题教学中,必须采用“联想法”引导学生进行推理、想象。可让学生找出题中关键词来引发联想,由题中的一个词语或数量想到与之有关的另一个词语或数量,以弄清题中的数量关系。如:五年级同学要浇300棵树,已经浇了180棵,剩下的分3次浇完,平均每次要浇多少棵?题中出现“要浇、已浇、剩下、3次、平均每次”等字眼,教学时可提示,引导学生进行推理想象,展开一个由“要浇”、“已浇”想到“剩下”,由“剩下”、“分3次”想到“平均每次”的合理想象过程。又如:一块长方形的萝卜地,长15米,宽6米。在这块地里一共收萝卜1350千克,平均每平方米收萝卜多少千克? 解题时只要学生能从“长、宽”想到“周长”或“面积”,或由“平方米”想到“面积”(平方米是常用的面积单位),就能确定必须先求面积了。这样,问题不就迎刃而解了吗?
三、让学生分析应用题常用的推理方法
教学过程中,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。例如:甲车一次运煤300千克,乙车比甲车多运50千克,两车一次共运煤多少千克?
指导学生口述,要求两车一次共运煤多少千克?根据题意必须知道哪两个条件(甲车运的和乙车运的)?题中列出的条件哪个是已知的(甲车运的),哪个是未知的(乙车运的),应先求什么(乙车运的300+50=350)?然后再求什么(两车一共用煤多少千克,300+350=650)?
综合法是从应用题的已知条件出发,通过分析推导出题中要求的问题。如上例,引导学生这样想:知道甲车运煤300千克,乙车比甲车多用50千克,可以求出乙车运煤重量(300+50=350),有了这个条件就能求出两车一共运煤多少千克?(300+350=650)。通过上面题的两种解法可以看出,不论是用分析法还是用综合法,都要把应用题的已知条件和所求问题结合起来考虑,所求问题是思考方向,已知条件是解题的依据。
四、培养学生多练习的习惯
多练即对学生进行多种形式的解应用题的训练。练习中,教师要注意照顾全体,辅差培优,这样既可稳定尖子生,又可提高中差等生。练习可分为课堂练习和课外练习。设计练习题时应恰当运用口答、板演、书面练习和动手操作等多种练习相结合的形式,注意“质”与“量”的有机统一,发挥每种练习的独特作用,调动全体学生的积极性,培养学生的创新意识和实践能力,从而达到开发学生智力,使练习收到实效。比如:既要设计一些选择、改编、补充条件或问题等基本形式的练习,又要适当设计一些开放性练习。如答案不唯一,一题多变、一题多解、多余条件、条件不够等。让他们在点点滴滴的进步中感受“成功”的喜悦,产生学习的成就感和自豪感,让他们感受到学习数学的轻松与快乐。
五、引导学生学会“假设”
假设是指将题中的某一条件先假设为与其相近的另一条件,从而使问题的解答趋于简单、明朗。如练习题:“一批煤,原计划每天烧16吨,实际每天烧12吨,结果多烧5天。原计划这批煤可以烧多少天?”假设实际烧煤的时间与原计划烧煤的时间相同,则实际烧煤的总吨数要比原计划烧煤的总吨数少12×5=60(吨)。总吨数差60吨的原因是什么呢?因为实际比原计划每天少烧16-12=4(吨),60吨里包含几个4吨,就是原计划烧煤的时间。根据实际少烧的吨数和实际少烧的时间,就能求出总吨数。
12×5÷(16-12)=15(天)
六、让数学与生活相结合
我们应从课堂教学入手,联系生活实际讲数学,把孩子的生活经验数学化,把数学问题生活化。如教学图画应用题时,可以编一道这样的文字应用题:过春节了,爸爸买了一篮子又红又大的苹果共10个,给姥姥送去4个,还剩几个?这样似乎累赘,但很明显学生感觉到四个苹果是从篮子里拿出来的,拿出来即“去掉”,“去掉”就用减法,从10个里去掉4个,则用10减去4得6个。这比让学生说篮子外面和里面共有10个苹果,篮子外有4个,求篮子里有几个苹果,让学生列式计算效果要好得多。又如教学“小明要写9个字,已经写了6个,还要写几个?”这一道应用题时,教师就画9个田字格,在6个格子中写6个字,指着剩下的空田字格问学生“还要写几个”。写一个字就相当于去掉了(手势)一个格(因为这个格子写过了就不能再写了),写6个字去掉了几个格?去掉用什么方法?这样学生就很快地理解了,还要写几个用减法,用总数减去已经写的个数。这样的例子还很多,至于怎样表述更有利于不同的学生理解,就在于教师对学生的了解程度及引导方式了。
总之,教无定法,作为一名数学老师,要从多方面引导学生,教导学生,学生的思路越清析,解题方法也就越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于学生的求知欲,使其在数学上得到更好的发展。
【关键词】应用题;引导;培养;推理;假设
在小学数学的学习中,应用题的占的比率很大。而在现实生活中,我们也可以利用所学到的应用题来解决实际的问题。例如,费用的支出和收入、盈亏问题,行程问题,工程问题等等。因此,可以说应用题是生活的需要,无所不有,无处不在。其实应用题的学习是对小学生进行思维训练,培养小学生的数学逻辑思维能力,提高其数学素质。因此,应用题教学是小学数学教学中的一个重点。以下是我的几点看法:
一、引导学生怎样解应用题
1、认真阅读题目。很多学生一直认为只有语文才需要一遍遍地读。数学是一门很省力的科目,不需要怎么花时间读题的。其实这是个很大的误区。数学是一门综合性非常强的科目,对语言的理解能力要求相当高。同时读题也是解决应用题的重要环节,是学生自己感知信息数据的过程。读,看起来是非常简单的事。但数学应用题的读不是泛泛而读,要求的是读通、读透。很多学生之所以做错,其中最主要原因之一就是由于读题时走马观花,完全没有看懂题目问了什么,很随意的就开始动笔,这样的结果往往是做错了题目,甚至有的题目错的非常的离谱,让老师无法理解你是如何做出来的。“书读百遍,其义自见。”应用题也不例外。甚至可以这么说:“与其让学生抄题目,不如让学生认真读题目。”这当中的道理,就像让学生抄不认识的字一样,不论抄多少遍,学生还是同样不认识、不理解。认真的读题,不仅能提高学生的数学意识,而且也使学生的感知能力得到了培养,同时也提高了学生捕捉信息数据的能力,为学生理解题意奠定了初步的基石。
2、圈重点。在做应用题的时候一定要把重点的词圈下来。这里所谓的重点词并不是指同一个词语,因为每个学生的理解能力不同,所以在他们眼中重点的词也是完全不一样的,有多有少,但不管怎么,圈出的词一定要为你做题服务。例如:在教《分数加减法》时,经常会遇到这样的题目,一块地共多少公顷,其中多少种大豆,多少种棉花,其余种玉米,玉米的种植面积占这块地的几分之几?
这道题主要是让你区别给你的分数是分率还是一个数。这个时候我就要求学生必须把有单位名称的数字圈出来,这样可以提醒自己,数和分率是不同的,不可以进行加减法。同时划出“几分之几”明白的告诉学生求的是一个分率,和公顷无关。划是一个很好的习惯,可以提醒学生在今后的思考中注意一些细小的地方,以免出现不该有的错误。
二、培养学生的想象能力。
在应用题教学中,必须采用“联想法”引导学生进行推理、想象。可让学生找出题中关键词来引发联想,由题中的一个词语或数量想到与之有关的另一个词语或数量,以弄清题中的数量关系。如:五年级同学要浇300棵树,已经浇了180棵,剩下的分3次浇完,平均每次要浇多少棵?题中出现“要浇、已浇、剩下、3次、平均每次”等字眼,教学时可提示,引导学生进行推理想象,展开一个由“要浇”、“已浇”想到“剩下”,由“剩下”、“分3次”想到“平均每次”的合理想象过程。又如:一块长方形的萝卜地,长15米,宽6米。在这块地里一共收萝卜1350千克,平均每平方米收萝卜多少千克? 解题时只要学生能从“长、宽”想到“周长”或“面积”,或由“平方米”想到“面积”(平方米是常用的面积单位),就能确定必须先求面积了。这样,问题不就迎刃而解了吗?
三、让学生分析应用题常用的推理方法
教学过程中,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。例如:甲车一次运煤300千克,乙车比甲车多运50千克,两车一次共运煤多少千克?
指导学生口述,要求两车一次共运煤多少千克?根据题意必须知道哪两个条件(甲车运的和乙车运的)?题中列出的条件哪个是已知的(甲车运的),哪个是未知的(乙车运的),应先求什么(乙车运的300+50=350)?然后再求什么(两车一共用煤多少千克,300+350=650)?
综合法是从应用题的已知条件出发,通过分析推导出题中要求的问题。如上例,引导学生这样想:知道甲车运煤300千克,乙车比甲车多用50千克,可以求出乙车运煤重量(300+50=350),有了这个条件就能求出两车一共运煤多少千克?(300+350=650)。通过上面题的两种解法可以看出,不论是用分析法还是用综合法,都要把应用题的已知条件和所求问题结合起来考虑,所求问题是思考方向,已知条件是解题的依据。
四、培养学生多练习的习惯
多练即对学生进行多种形式的解应用题的训练。练习中,教师要注意照顾全体,辅差培优,这样既可稳定尖子生,又可提高中差等生。练习可分为课堂练习和课外练习。设计练习题时应恰当运用口答、板演、书面练习和动手操作等多种练习相结合的形式,注意“质”与“量”的有机统一,发挥每种练习的独特作用,调动全体学生的积极性,培养学生的创新意识和实践能力,从而达到开发学生智力,使练习收到实效。比如:既要设计一些选择、改编、补充条件或问题等基本形式的练习,又要适当设计一些开放性练习。如答案不唯一,一题多变、一题多解、多余条件、条件不够等。让他们在点点滴滴的进步中感受“成功”的喜悦,产生学习的成就感和自豪感,让他们感受到学习数学的轻松与快乐。
五、引导学生学会“假设”
假设是指将题中的某一条件先假设为与其相近的另一条件,从而使问题的解答趋于简单、明朗。如练习题:“一批煤,原计划每天烧16吨,实际每天烧12吨,结果多烧5天。原计划这批煤可以烧多少天?”假设实际烧煤的时间与原计划烧煤的时间相同,则实际烧煤的总吨数要比原计划烧煤的总吨数少12×5=60(吨)。总吨数差60吨的原因是什么呢?因为实际比原计划每天少烧16-12=4(吨),60吨里包含几个4吨,就是原计划烧煤的时间。根据实际少烧的吨数和实际少烧的时间,就能求出总吨数。
12×5÷(16-12)=15(天)
六、让数学与生活相结合
我们应从课堂教学入手,联系生活实际讲数学,把孩子的生活经验数学化,把数学问题生活化。如教学图画应用题时,可以编一道这样的文字应用题:过春节了,爸爸买了一篮子又红又大的苹果共10个,给姥姥送去4个,还剩几个?这样似乎累赘,但很明显学生感觉到四个苹果是从篮子里拿出来的,拿出来即“去掉”,“去掉”就用减法,从10个里去掉4个,则用10减去4得6个。这比让学生说篮子外面和里面共有10个苹果,篮子外有4个,求篮子里有几个苹果,让学生列式计算效果要好得多。又如教学“小明要写9个字,已经写了6个,还要写几个?”这一道应用题时,教师就画9个田字格,在6个格子中写6个字,指着剩下的空田字格问学生“还要写几个”。写一个字就相当于去掉了(手势)一个格(因为这个格子写过了就不能再写了),写6个字去掉了几个格?去掉用什么方法?这样学生就很快地理解了,还要写几个用减法,用总数减去已经写的个数。这样的例子还很多,至于怎样表述更有利于不同的学生理解,就在于教师对学生的了解程度及引导方式了。
总之,教无定法,作为一名数学老师,要从多方面引导学生,教导学生,学生的思路越清析,解题方法也就越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于学生的求知欲,使其在数学上得到更好的发展。