论文部分内容阅读
建立数学模型,是数学思考方法,是利用数学语言、符号、式子或图象模拟现实的模型,是把现实世界中有待解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题,并综合运用所学的数学知识与技能求得解决的一种数学思想方法。在数学课堂教学活动中,教师应怎么帮助学生建立并把握有关的数学模型呢?
一、借助情境图,引导学生建模
所谓“模”,即“建模”。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。对小学数学而言,“建模”的过程,实际上就是“数学化”的过程,是学生在数学学习中获得某种带有“模型”意义的数学结构的过程。例如在教学5-2等于几的“减法”时,我进行了如下教学:出示情境图。师:谁来说一说第一幅图,你看到了什么?生:从图中我看到了有5个小朋友在浇花。师:第二幅图呢?生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。师:你能把两幅图的意思连起来说吗?生:有5个小朋友在浇花,走了2个,还剩下3个。师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?生:有5个小朋友在浇花,走了2,还剩几个?生(齐)个。3师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)生齐读:5减2等于3。师:谁来说一说这里的5表示什么?2、3又表示什么呢?……师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。生2:树上有5只小鸟,飞走2只,还剩3只。……这样由具体、形象的实例开始,借助于操作予以内化和强化,然后引导学生联系生活实际,赋予“5-2=3”以更多的“模型”意义。
二、创设情境,帮助学生建模
例如教学:三年级初步认识一位小数时,我进行了如下教学:课始,教师出示到超市购买的一些物品和相应的价钱:水彩笔12元、美工刀3元5角、铅笔0.4元。当“0.4元”出现后,教师提问:师:知道“0.4元”到底是多少钱吗?生:0.4元就是4角钱。(板书4角=0.4元)师:4钱有没有1元多?生:没有。师:看来,和1元相比,0.4元只能算是一个“零头”了。如果我们用这样,你能把它分一分、涂一涂,将0.4元表示的一个长方形来表示1元(出示图1)出来吗?图1图2(学生拿出练习纸画画涂涂,把自己的想法表示出来。交流时,寻找共性特点:平均分成10份,涂出其中的4份)师:为什么这样就将“0.4元”表示出来了呢?生:因为1元等于10角,平均分成10份,1份就是1角,4份就是4角。师:看着大家画出的图示,让我想起以前咱们学什么时,也是这样子平均分一分、涂一涂?生:分数!师:那0.4元如果用分数表示,如何表示呢?生:十分之四元。师:数学真是有趣,原来0.4元也就是我们熟悉的十分之四元。(出示图2)师:老师购买了一块橡皮,它的价钱是多少呢?(出示:0.8元)0.8元是多少钱?生:0.8元就是8角师:又是一个不足1元的零头,如果我们还是用这样的一个长方形来表示1元,那0.8元又该怎么表示呢?学生模仿者刚才的方式表示出“0.8元也就是十分之八元”。接着,老师给学生提供一个空白的平均分成10份的长方形,任意涂出其中一部分,表示出一个小数和相应的分数。几个学生自由展示后,组织梳理,从0.1就是十分之一,0.2就是十分之二……师:接下来我们再来看看笔记本的价格,我给你一个图示,你知道它的价钱了吗?生:笔记本的价格是1.2师:刚才的小数都是“零点几”,现在怎么变成“一点几”了?生:现在有两个长方形了,第一个涂满了颜色,表示整1元。第二个平均分成了10份,涂了其中的2份,也就是2角钱,0.2元,合起来就是1.2元了。师:我买的钢笔的价钱是8.6元,如果让你画一幅图来表示它的价钱,你准备怎样画呢?生:我准备先画9个大小一样的长方形,然后把前面8个涂满颜色,第9个长方形平均分成10份,涂出其中的6份。……这样通过知识间的联系(小数和十进分数的关系),让学生在探索过程中,借助于直观图示的形象支撑,建立起了一位小数的“直观模型” (长方形等分、涂色)。
三、借助教具,让学生主动建模
建构主义学习理论认为,知识是学习者在一定的情境下,借助他人(教师、学习同伴等)的帮助,利用必要的学习材料,通过意义建构的方式而获得的。《数学课程标准》明确指出指出“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时教师要提供丰富的实验材料,让学生从中挑选出解决问题必须的材料进行研究,使学生在主动获取知识的过各程中建构数学模型。
总之,引导学生构建数学模型的过程,就是将实际问题数学化的过程,也是思维训练的过程,这将有助于提高学生发现数学、“创造”数学、运用数学的能力和数学素养。可以这样说,学生学习数学知识的过程,实际上是对一系列数学模型的理解、把握过程。
【作者单位:晋江市永和镇仑峰小学 福建】
一、借助情境图,引导学生建模
所谓“模”,即“建模”。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。对小学数学而言,“建模”的过程,实际上就是“数学化”的过程,是学生在数学学习中获得某种带有“模型”意义的数学结构的过程。例如在教学5-2等于几的“减法”时,我进行了如下教学:出示情境图。师:谁来说一说第一幅图,你看到了什么?生:从图中我看到了有5个小朋友在浇花。师:第二幅图呢?生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。师:你能把两幅图的意思连起来说吗?生:有5个小朋友在浇花,走了2个,还剩下3个。师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?生:有5个小朋友在浇花,走了2,还剩几个?生(齐)个。3师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)生齐读:5减2等于3。师:谁来说一说这里的5表示什么?2、3又表示什么呢?……师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。生2:树上有5只小鸟,飞走2只,还剩3只。……这样由具体、形象的实例开始,借助于操作予以内化和强化,然后引导学生联系生活实际,赋予“5-2=3”以更多的“模型”意义。
二、创设情境,帮助学生建模
例如教学:三年级初步认识一位小数时,我进行了如下教学:课始,教师出示到超市购买的一些物品和相应的价钱:水彩笔12元、美工刀3元5角、铅笔0.4元。当“0.4元”出现后,教师提问:师:知道“0.4元”到底是多少钱吗?生:0.4元就是4角钱。(板书4角=0.4元)师:4钱有没有1元多?生:没有。师:看来,和1元相比,0.4元只能算是一个“零头”了。如果我们用这样,你能把它分一分、涂一涂,将0.4元表示的一个长方形来表示1元(出示图1)出来吗?图1图2(学生拿出练习纸画画涂涂,把自己的想法表示出来。交流时,寻找共性特点:平均分成10份,涂出其中的4份)师:为什么这样就将“0.4元”表示出来了呢?生:因为1元等于10角,平均分成10份,1份就是1角,4份就是4角。师:看着大家画出的图示,让我想起以前咱们学什么时,也是这样子平均分一分、涂一涂?生:分数!师:那0.4元如果用分数表示,如何表示呢?生:十分之四元。师:数学真是有趣,原来0.4元也就是我们熟悉的十分之四元。(出示图2)师:老师购买了一块橡皮,它的价钱是多少呢?(出示:0.8元)0.8元是多少钱?生:0.8元就是8角师:又是一个不足1元的零头,如果我们还是用这样的一个长方形来表示1元,那0.8元又该怎么表示呢?学生模仿者刚才的方式表示出“0.8元也就是十分之八元”。接着,老师给学生提供一个空白的平均分成10份的长方形,任意涂出其中一部分,表示出一个小数和相应的分数。几个学生自由展示后,组织梳理,从0.1就是十分之一,0.2就是十分之二……师:接下来我们再来看看笔记本的价格,我给你一个图示,你知道它的价钱了吗?生:笔记本的价格是1.2师:刚才的小数都是“零点几”,现在怎么变成“一点几”了?生:现在有两个长方形了,第一个涂满了颜色,表示整1元。第二个平均分成了10份,涂了其中的2份,也就是2角钱,0.2元,合起来就是1.2元了。师:我买的钢笔的价钱是8.6元,如果让你画一幅图来表示它的价钱,你准备怎样画呢?生:我准备先画9个大小一样的长方形,然后把前面8个涂满颜色,第9个长方形平均分成10份,涂出其中的6份。……这样通过知识间的联系(小数和十进分数的关系),让学生在探索过程中,借助于直观图示的形象支撑,建立起了一位小数的“直观模型” (长方形等分、涂色)。
三、借助教具,让学生主动建模
建构主义学习理论认为,知识是学习者在一定的情境下,借助他人(教师、学习同伴等)的帮助,利用必要的学习材料,通过意义建构的方式而获得的。《数学课程标准》明确指出指出“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时教师要提供丰富的实验材料,让学生从中挑选出解决问题必须的材料进行研究,使学生在主动获取知识的过各程中建构数学模型。
总之,引导学生构建数学模型的过程,就是将实际问题数学化的过程,也是思维训练的过程,这将有助于提高学生发现数学、“创造”数学、运用数学的能力和数学素养。可以这样说,学生学习数学知识的过程,实际上是对一系列数学模型的理解、把握过程。
【作者单位:晋江市永和镇仑峰小学 福建】