一类有偏差变元的泛函微分方程的2π周期解

来源 :高校应用数学学报:A辑 | 被引量 : 0次 | 上传用户:fkjunjin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
用迭合度理论研究一类有偏差变元的泛函微分方程x'(t)+f(x(t))x'(t)+bx(t)+g(x(t-τ1(t,x(t),x'(t))),……,x(t,x(t),x'(t)))=p(t)的2π周期解的存在性,从本质上改进和推广了张正球等人(1998年)的相应结果。
其他文献
给定半参数回归模型Y=X′β+g(T)+e,其中β∈Rp是未知参数向量,g(t)是定义在[0,1]上的未知函数,e是随机误差.本文研究了β,g(t)和σ2的估计量n,n(t)和2n,在适当的条件下证明了它们的
本文研究奇性两点狄利克雷问题,在f(t,x,y)≤a(t)g(x)+β(t)h(X)lyl,0<E≤2情形下,得到了解的存在性定理,推广了Tineo(1992)的结果.
提出了有向网络最大容量的两种计算方法,将杨超等人(1998)的无向网络容量扩充问题,扩展到约束条件含固定费用的有向网络的扩充,并给出了强多项式算法.
本文主要研究了B值适应可积序列大数定律的充分必要条件,同时讨论了它们与Banach空间几何特征的依赖关系。
本文讨论截断数据生存函数的估计问题。由于在寿命试验中截断分布G(y)往往是人们5自己设计的,从类似Buckley和James处理期望的思想出发,文中给出了一个新的估计,并计算了它的期望和方差。
从工程实际出发,借助最佳逼近论和总体极值的思想,运用常微分方程组的求解理论,最优化理论与数值方法,为在最优控制中的一类条件微分方程组的求解,开辟了一条新的求解途径,并用多个
本文给出了一个将矩阵迹的不等式推广为Hilbert空间中算子迹的不等式的方法,并用它较简捷地将矩阵论中Bellman问题的已有结果以及其它一些矩阵迹的不等式推广为算子迹的相应不等式。
在具余维2奇点的四维系统的两参数开折的研究中出现一类三点异宿环的扰动分支,对此异宿环产生极限环的唯一性一直未得到完整的解决,本文圆满地解决了这一问题,并获得了全局分支中
本文得到Stein流形上一个带有算子映射函数S(z,ζ)和实参数的积分公式,由这个公式不但可以推出Stein流形上全纯函数和光滑函数的一些已有积分公式和它们相应的拓广式,而且还可以得到一些新的积
本文考虑Duffing型方程αx^n+bx+g(x(t-r))=p(t),用重合度理论,获得了此方程至少存在一个2n周期解的充分条件.