【摘 要】
:
文章基于已知三角形三边平方的线性等式求三角形面积最大值出发,从不同角度对此思考,给出九种不同解法,发挥该题的最大价值.
【机 构】
:
安徽省芜湖市第一中学 241000
论文部分内容阅读
文章基于已知三角形三边平方的线性等式求三角形面积最大值出发,从不同角度对此思考,给出九种不同解法,发挥该题的最大价值.
其他文献
函数的零点问题,在利用零点存在性定理求解过程中,判断符号是个难点,文章以一道高三质检试题为例,探析“放缩取点法”的解题策略,从而突破该难点.
为了进一步引导学生在进行三角形相关题目解题时,能够准确快速地找准题目考查的知识点,巧妙地将题目条件与求解有机结合并快速作答.通过对余弦定理的概念进行深度剖析,列举典型题目有针对性地解析,帮助学生总结做题规律,从而培养其逻辑思考与联系思路解题的能力.
文章对2021年高中数学联赛重庆市预赛的解析几何试题(压轴题)进行深入探究,将试题的结论进行推广和类比,得到若干性质,并给出性质相关的应用.
在齐次分式当中,分子和分母具有相同的次数,在该类问题求解过程中,要综合考虑方程转换、数形结合以及不等式等基本求解思想,对该类问题进行求解.
斜率是高中数学中解析几何的重要考核知识点,是几何模块中的基本概念.本文通过对圆锥曲线相关题型中斜率的关系进行分析,总结出圆锥曲线与斜率相关试题的快速解答方法.
圆锥曲线是高考考查的重点内容,椭圆最值问题是高考圆锥曲线热点题型之一,以下对两道2021年全国乙卷高考数学试题进行解法探究和拓展探究,以期对研究圆锥曲线高考真题达到抛砖引玉的作用.
从2021年全国卷第22题出发,探析极值点偏移问题的求解策略,并进行拓展,以期提高解题能力,提升复习效率.
圆锥曲线问题是高考和模拟考中的重点和难点内容,由于运算量大、综合性强,常有学生说没有思路,或者即使有思路但太繁琐,以至很难进行到底;其实,有些解析几何问题有简单方法,但这些似乎不是书本上的“正统”内容,平时学习中又似曾相识,若能把这些似曾相识的内容整理成基本模型,对解答圆锥曲线综合问题不仅能提供思路,还能高效解答,本文以中点弦模型为例巧妙解决解析几何试题中的几类常见问题,以期给读者启发.
本文给出一道优美轮换不等式的简洁证明,证明过程简洁,但思考量大,且证明方法不常规.形成此文旨在与读者共赏,旨在借助贵刊请教同仁给出其它简证方法.
解析几何中,从不同角度审视几何关系可以发现不同的数量关系,既有利于开拓思维,还有利于优化解题策略,找到方便快捷的解题方法,这对于提高学生的解题能力大有裨益.