【摘 要】
:
网络信息化的迅速发展,对人们的思想观念和工作方式产生了较天的冲击.高校作为推动和普及网络技术的先驱,其网络文化建设与管理工作有着自身的特殊性.近些年来,随着社会形势
【机 构】
:
上海交通大学宣传部,上海,200240
论文部分内容阅读
网络信息化的迅速发展,对人们的思想观念和工作方式产生了较天的冲击.高校作为推动和普及网络技术的先驱,其网络文化建设与管理工作有着自身的特殊性.近些年来,随着社会形势的不断变化、网络技术的持续创新、方针政策的逐步完善,高校网络文化建设与管理工作在新的挑战面前,也需要用一种新的思路来加以展开,其内容和发展都需要作出新的调整.
其他文献
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)第24题考查了选修4—5:不等式选讲中的柯西不等式,其原题如下: 设a,b,c均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ca≤113; (Ⅱ)a21b+b21c+c21a≥1. 本题可以用均值定理证明,但也可用柯西不等式证明,不妨用柯西不等式来证明本题第二问. 证明:因为a,b,c均为正数,根据柯西不等式有 (a21b+b2
向量的学习是高中阶段一门很重要的课程,它的出现告诉我们向量与几何之间的关系.在日益重视向量学习的时代,运用新思路解决相关的问题是非常重要的,它在提高学生的计算能力和解决实际问题的能力上起着非常重要的作用.本文介绍了向量法在高中数学几何函数中的应用. 向量是高中数学中重要的概念,它本身就存在着一定的教育和实用价值.学生学习向量法能够提高学生的运算能力,并且有利于拓宽思路.然而在向量教学实践中确实存
数学思想是对数学知识、方法构建呈一定规律的认知,具有完整性、理性的认识,灵活运用数学思想,可解决具体的数学问题,将复杂的数学问题转化为简单的解题过程,便于换算得出准确的解题结果,有着化难为易的解题效果.整体思想在数学解题中,从解题的整体出发,对数学问题进行整体思考,进而培养出整体数学解题思维,能够从大局出发,获得化繁为简的理想效果.本文通过高中数学解题实例,对整体思想在高中数学解题中的应用进行探讨
反应热计算是高考热点也是难点,考查角度较固定,结合常见题型将解题方法总结为主要三种:定义法、键能法和盖斯定律法. 计算能力是每一个学生应具备的基本技能,也是高考中的必考内容,反应热的计算就是计算中的热点之一,也是难点之一,题型以选择题为主,有时也以填空题的形式出现在综合题中. 现结合例题将常见的反应热计算题型及方法总结如下: 一、定义法 根据燃烧热、中和热定义或者题中条件求算. 例1在10
形势与政策教育是高校学生思想政治教育的重要内容.“形势与政策”课是高校思想政治理论课的重要组成部分.改革开放以来,高校形势与政策教育经历了起步、发展、完善三个阶段.
社会主义核心价值体系的研究和探讨,关键在于对影响当代中国价值体系建设的一些重要理论问题进行系统研究.这些问题主要包括价值、价值观和价值体系的思考方式.构建社会价值
提高自身的“合法性”与魅力,是社会主义核心价值体系培育的前提基础和内在要求.增强社会主义核心价值体系的合法性与魅力,从理论品质维度来看,就要使其客观全面地反映马克思
基于高校校园论坛实名制六年来所面临的新情况,我们提出“高校论坛互联共享”的校园论坛管理新思路,通过“结队”、“强强联合”、“区域联合”等方式,加强校园BBS的“开放性
本文介绍正弦曲线和余弦曲线的余弦定理与应用,供读者欣赏. 定理:设正弦曲线y=Asinωx或余弦曲线y=Acosωx(A>0,ω>0)与x轴相邻的两个交点是 M,N,P是正余弦曲线上且位于M,N之间的最高点或最低点, ∠MPN=θ, π是圆周率,则 证明:因为正余弦曲线的形状和周期性相同,故将点M平移至坐标原点O,由函数 推论1 :设正弦曲线 y=Asinωx或余弦曲线y=Acosωx
问题:如图1,电影屏幕的上下边缘A、B到地面的距离AD=a、BD=b(a>b),屏幕的正前方地面上一点P,求视角∠APB的最大值,以及当∠APB最大时,P、D两点的距离. 解:设∠APB=β,∠BPD=α,PD=x,则因为β为锐角,所以当tanβ最大时,∠APB最大.由tan(α+β)= ax,tanα=bx得 图2 例1 椭圆x2a2 +y2b2=1 的左准线为l,左焦点为F,点P是