支持向量数据域描述相关论文
信号调制作为当下通信过程中必不可少的一环,一直对整个通信系统整体性能以及传输能力产生着极大的影响,而随着现代无线通信技术的......
针对传统的只用纹理的一种特征进行纹图像分割时的分割错误率较高的问题,提出了一种融合多特征的纹理图像分割算法。该方法综合考......
为了在微弱故障征兆出现时能通过正常状态对异常进行辨识,针对通常动态系统故障状态样本缺乏的单值分类问题,提出混沌分形特征组合......
为了克服经典区域增长算法在复杂目标与背景分布情况下,停止条件难以确定的不足,提出基于目标模糊置信度描述驱动的区域能量进化增......
针对脑部磁共振图像(MRI)的灰度分布特性,提出一种结合灰度距离加权K-means聚类与模糊置信度的混合医学图像分割方法。采用改进的......
入侵检测,是指检测目标在不携带信号收发设备的条件下,通过感知目标对无线电波的影响程度实现对环境的异常检测,在智能家居、警务......
以统计学习理论为背景,以核方法为基础的两类典型单类分类算法:单类支持向量机(OCSVM)和支持向量数据域描述(SVDD),均以降低VC维为......
将颅面模型数据分区问题转换为一种模式分类问题,给出了一种网格模型上多尺度的特征处理方法,提出了一种基于核方法的支持向量数据......
鉴于不平衡数据集中类不平衡比较大的分类问题,利用样本点的特性建立类不平衡调节因子和模糊隶属度,提出了平衡模糊支持向量机。首......
说话人识别技术由于其独特的便利性、精确性和经济性,被认为是最自然的生物认证技术,在安全监控、司法鉴定、电子侦听、金融服务等......
以目标一维距离像(High Resolution Range Profiles,HRRP)进行识别的先决条件是能够取得识别目标的特征数据,建立目标特征库。在实......
将振动信号进行有效的特征提取与描述,是轴承故障诊断的关键。针对轴承实际运行当中,因故障数据的缺乏而严重影响故障诊断准确性的......
支持向量机是Vapnik等在统计学习理论基础上发展起来的针对小样本的新型机器学习方法。该方法由于具有较强的泛化能力、方便对高维......