FOURIER拟谱方法相关论文
本文提出了一种求解带旋转项空间分数阶Schr(?)dinger方程的数值方法.我们首先介绍关于Schr(?)dinger方程的研究背景以及现状.然后基于......
非线性Schr?dinger(NLS)方程在量子力学、等离子体物理、地震学、声学等许多学科中有着广泛的应用。本文研究了带三次项的四阶NLS方......
在“数值算法应尽可能多地保持原问题的本质特征”的指导原则下,冯康先生首先提出了保结构算法的思想.由于其优良的稳定性和精确的......
许多偏微分方程能被写成一个多辛哈密顿系统,例如:sine-Gordon方程、非线性薛定谔方程、KdV方程、Camassa-Holm方程、麦克斯韦方程......
一切真实的、耗散可忽略不计的物理过程都可以表示成哈密尔顿系统.构造哈密尔顿系统的保结构算法对长时间精确、有效的数值模拟具......
带波动算子的非线性薛定谔(NLSW)方程在物理学当中的很多领域都有十分广泛的应用,如等离子体中的朗格缪尔波、非线性光学、Sine-Go......
Schr(?)dinger方程是1926年由奥地利物理学家Schr(?)dinger提出的量子力学中的一个基本方程。近年来,由于分数阶微分方程引起了人......
随着无限维动动力系统理论研究的深入以及计算机计算能力的增强,无限维动力系统的数值计算越来越引起人们的重视.Sobolev型方程(或......
该文考虑了对称正则长波(SRLW)方程的多辛算法.辛算法是从辛几何观点出发,利用变分原理构造的具有保持原Hamilton系统辛几何结构性......
非线性Schr(o)dinger(NLS)方程在量子力学、等离子体物理、地震学、声学等许多学科中有着广泛的应用。本文研究了带三次项的四阶NL......
二次KdV类型水波方程作为一类重要的非线性方程有着许多广泛的应用前景.本文基于Hamilton系统的多辛理论研究了一类二次KdV类型水......
所讨论的具有波动算子的非线性Schr(o)dinger方程具有多辛结构, 从而把它写成Hamilton正则方程组的形式, 导出其多辛守恒律.用辛Fo......
期刊
考虑用多辛Fourier拟谱方法来处理一类非线性Schr(o)dinger方程的周期边值问题.分析半离散多辛Fourier拟谱格式的稳定性,得到了最......
针对带有弱阻尼项的非线性Schr(o)dinger方程周期初值问题,研究一个全离散Fourier拟谱格式.基于对拟谱逼近解所做的一系列的一致先......
分析了泊松方程的多辛结构,推导了泊松方程的多辛拟谱格式,并得出相关守恒律,最后进行了数值试验.数值模拟的高精度说明多辛方法为......
考虑一维Sobolev方程的大时间问题, 构造了它的半离散和全离散拟谱逼近, 获得了时间区间0≤t<∞上一致最优阶的误差估计.......
所讨论的具有波动算子的非线性Sehr(oe)dinger方程具有多辛结构。从而把它写成Hamilton正则方程组的形式,导出其多辛守恒律.用辛Fourie......
利用Fourier拟谱方法,分别对梁振动方程的辛格式进行空间和时间方向上的离散,得到相应的多辛守恒律.文中证明了离散局部能量守恒,并用......
考虑用多辛Fourier拟谱方法来处理一类非线性Schrǒdinger方程的周期边值问题.分析半离散多辛Fourier拟谱格式的稳定性,得到了最优收......
DGH方程作为一类重要的非线性方程有着许多广泛的应用前景.通过正则变化,构造了DGH方程的多辛哈密尔顿系统.利用Fourier拟谱方法对......
许多具有守恒量的偏微分方程,如:各类波动方程,Dirac方程,Schrodinger,耦合Schrodinger-Klein-Gordon方程,广义Zakharov方程等,通常......
主要讨论Klein-Gordon-Schrdinger方程的Fourier拟谱辛格式,包括中点公式和Strmer/Verlet格式.首先构造一个哈密尔顿方程,针对......
针对带有弱阻尼项的非线性Schrdinger方程周期初值问题,研究一个全离散Fourier拟谱格式。基于对拟谱逼近解所做的一系列的一致先......
分析了泊松方程的多辛结构,推导了泊松方程的多辛拟谱格式,并得出相关守恒律,最后进行了数值试验.数值模拟的高精度说明多辛方法为......
基于Hamilton空间体系的多辛理论研究了DGH方程的数值解法,利用Fourier拟谱方法构造了DGH方程的多辛格式,该格式满足多辛守恒律.数......
现代科学和工程中的大量的数学模型都可以用微分方程来描述,其中包含常微分方程(ODEs)、偏微分方程(PDEs)、代数微分方程(DAEs)与......