中立型延迟积分微分方程相关论文
泛函微分方程(FDEs)在自动控制、生物学、医学、化学、人口学、经济学等众多领域有着广泛应用,其理论和算法研究具有无可置疑的重要性......
延迟微分方程经常出现在自动控制、生物、医学、航天航空及国民经济等领域.中立型延迟积分微分方程和积分微分方程奇异摄动问题是两......
设cdSd维的欧几里得空间,〈·,·〉为其中的内积,‖·‖是由该内积导出的范数.考虑如下形式的非线性中立型延迟积分微分方程初值问题(......
学位
科学与工程技术中的许多系统都具有散逸性,即系统具有一有界吸引集,使从任意初始条件出发的解经过有限时间后进入并随后始终保持在这......
学位
延迟积分微分方程广泛出现于物理、工程、生物、医学、航天航空及经济等领域,其算法理论研究具有毋庸置疑的重要性,近年来逐渐引起众......
设Rd为d维的欧几里得空间,为其的内积,‖·‖为该内积导出的范数。考虑如下Hale型非线性中立型延迟积分微分方程(NDIDEs)初值问题(IV......
获得了求解非线性中立型延迟积分微分方程的Runge-Kutta方法稳定及渐近稳定的条件,数值实验结果验证了所获理论的正确性.......
将线性θ-方法用于求解R(α,β_1,β_2,γ)类非线性中立型延迟积分微分方程,结果表明A-稳定的线性θ-方法(也即1/2≤θ≤1)是渐近......
研究了一类非线性中立型延迟积分微分方程的线性θ-方法.在一定的条件下证明了该方法渐近稳定的充要条件是2/1≤θ≤1.对于线性θ-......
讨论了一类非线性中立型延迟积分微分方程Runge-Kutta方法的稳定性.在适当的条件下证明了运用Runge-Kutta方法求解这类方程既是数......
本文研究求解R(α,β1,β2,γ)类非线性中立型延迟积分微分方程单支方法的数值稳定性,结果表明:在一定条件下,A-稳定的单支方法是数值稳定......
对一类非线性中立型延迟积分微分方程的B-收敛性进行了研究,对于单支方法运用于这类方程得到的数值方法,得到了该方法B-收敛的一个......
对一类非线性中立型延迟积分微分方程的数值稳定性进行了研究.将单支方法运用于这类方程得到了数值方法,根据A-稳定等价于G-稳定的理......
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清......