粗几何相关论文
本文定义了George和Veeramani意义下的模糊度量空间的强嵌入,证明了可强嵌入的模糊度量空间能够粗嵌入到Hilbert空间.另外还证明了......
Roe代数起源于非紧流形上的指标理论,是反映度量空间粗结构的一类具体的C*-代数。本文主要研究这类C*-代数的某些性质与底空间几何......
度量空间的“性质A”与“粗嵌入”是粗几何与高指标理论中的重要概念。1993年,Gromov引进了粗(一致)嵌入的概念,并提示度量空间到Hil......
学位
作为指标理论的中心问题之一,粗Baum-Connes猜想为非紧流形上椭圆微分算子的广义Fredholm指标提供了计算方法,而性质A可以推出粗Ba......
度量空间上的Roe代数是“非交换几何”及算子谱理论领域非常重要的C~*代数。本文研究了离散度量空间X上两类Roe代数的理想结构。一......
粗几何上的指标理论是“非交换几何”领域近十年来发展起来的重要研究方向,其主要问题“粗Baum-Connes猜测”希望用可计算的拓扑不......
该文用两种局部化方法研究了关于粗几何的指标理论的若干问题.第一种方法是通过参数t(时间)趋向于无穷而对Proper度量空间上的算子......
该文研究了局部紧Hausdorff空间关于抽象粗结构的Higson紧化的若干问题.证明了Higson紧化的万有性质,刻画了Higson紧化的函子性质......
粗几何是非交换几何近年来发展起来的重要研究方向。其主要目标是通过几何空间(如非紧完备黎曼流形、有限牛成群等)大尺度几何结构......
粗几何上的指标理论是"非交换几何"领域近年来非常活跃的研究分支,与几何、拓扑、算子代数、几何群论、Banach空间几何理论等都有密......
通过计算K同调群和K群,可以得到几何空间的拓扑几何信息.借助于同伦可以拓展可计算空间的范畴.在粗几何的领域不同的粗同伦形式已从......
非紧流形上的指标理论是上个世纪七十年代M.Atiyah和I.Singer在覆盖空间上椭圆算子的指标公式的研究基础上发展起来的一门新兴学科......
随着非交换几何迅速发展,C*-代数理论及它的K-理论计算在几何和指标理论中解决了很多问题.算子代数的研究越来越活跃,其中谱的不变......