【摘 要】
:
管理科学,自动化控制和力学上的大量问题都可以转化为求两个或两个以上闭凸集的交集中点的问题,这类问题通常被称为凸可行性问题。随着交叉学科的不断发展,凸可行性问题在计算机科学,交通,工程技术和信号处理等诸多领域中扮演着越来越重要的角色。变分不等式、单调包含和公共不动点问题是凸可行性问题中的重要组成部分,且三者之间有着密切的联系,可以彼此之间相互转化。另外,变分不等式、单调包含和公共不动点问题有着广泛的
论文部分内容阅读
管理科学,自动化控制和力学上的大量问题都可以转化为求两个或两个以上闭凸集的交集中点的问题,这类问题通常被称为凸可行性问题。随着交叉学科的不断发展,凸可行性问题在计算机科学,交通,工程技术和信号处理等诸多领域中扮演着越来越重要的角色。变分不等式、单调包含和公共不动点问题是凸可行性问题中的重要组成部分,且三者之间有着密切的联系,可以彼此之间相互转化。另外,变分不等式、单调包含和公共不动点问题有着广泛的应用背景。本论文在不同的空间框架下提出了一些有效逼近算法及其在具体问题中的应用。主要从算法设计、收敛性分析和数值效果等三个方面进行了研究。所得的结论推广和改进了一些现有的结果。全文共分八章,具体内容如下:第一章,绪论部分介绍了凸可行性问题在国内外的研究现状,给出了本文的主要工作和结构安排。最后,给出了求解凸可行性问题需要用到的预备知识。第二章,提出了一种求解变分不等式的修正的惯性次-超梯度算法。在算子满足序列弱连续性,伪单调性,且Lipschitz连续性的前提条件下,由该算法迭代产生的序列具有弱收敛性。数值实验结果表明新构造的算法相比于已有的某些算法有更快的收敛速度和更好的逼近效果。第三章,在惯性Tseng算法的基础上加以改进,给出了求解伪单调变分不等式问题的两类迭代算法,分别为惯性Tseng-Mann算法和惯性Tseng-粘滞迭代算法。并在适当的条件下,建立了强收敛定理。两类算法在每一步迭代过程中只需要计算一次投影算子,具有计算量小的优越性。进一步地,通过结合Armijo步长搜索准则,使得算法对Lipschitz常数没有限制,在这种条件下,给定的算法依然具有强收敛性。最后,分析了算法在求解模糊凸规划问题中的应用,并给出数值例子来说明理论结果的有效性。第四章,提出一个三步混合迭代算法,用于寻找一个双层变分不等式问题的近似解,并对算法的强收敛性进行了分析。所谓的双层变分不等式问题是指在一个变分不等式解集的基础上定义另一个变分不等式问题。基于该算法,给出了相应的动力系统模型。新构造的算法适合求解基于效用函数的网络宽带分配问题。数值结果验证了,与已有的算法相比,所提出的算法有更快的收敛速度。第五章,结合向前向后分裂算法、Tseng算法的思想与惯性技术,我们建立了多步混合迭代算法用来求解多集合极大单调包含问题。在满足一定的条件下,建立了一个强收敛定理。实验结果表明了算法适合求解信号恢复问题。第六章,在Banach空间框架下,结合Harlpern方法和Bregman投影方法,我们建立了一个Harlpern型-投影迭代算法用来逼近Bregman拟非扩张算子半群的公共不动点问题的近似解。在要求解集非空的前提下,证明了该算法是强收敛的。数值试验验证了理论结果的有效可行性。第七章,在误差允许的范围内,提出了一种改进的可变距离的向前向后分裂算法,用于寻找单调包含问题的解集和逆强单调算子的零点集之交集的一个公共元素。另一方面,我们还提出了一个带误差项的混合显式和隐式迭代算法,用于寻找一族非扩张算子的公共不动点问题和零点问题的公共解。在满足不同的前提条件下,分别对给定的两个算法的弱收敛性和强收敛性进行了分析。第八章总结本文的主要研究内容,并对未来的研究进行了展望。
其他文献
作为应用于电子通信领域的基础关键性材料,微波介质陶瓷具有广阔的应用前景。发展至今,陶瓷材料在微波频段介电性能的改善问题始终是研究的重点以及难点。然而目前该领域始终存在以“经验”作为指导思想展开实验,尽管存在可借鉴性,却无法从根本上利用理论指导实验,在研发新体系或对材料进行改性研究时没有“指挥棒”的作用发挥,因此寻找一种行之有效的理论成为研究学者的迫切需求。众所周知介质陶瓷的独特性体现在微波特性随晶
金属薄膜电爆炸驱动飞片技术是一种重要的动高压加载技术,以该技术为核心的冲击片雷管已应用于多个武器型号中。但由于现有的金属电爆炸薄膜电能转化为飞片动能效率较低,使得该技术难以适应未来武器系统小型化的发展需求,亟需开展能量转换效率高、易集成、可靠、安全的新型电爆炸薄膜设计、制备及应用技术研究。为此,本论文从电爆炸金属薄膜材料设计出发,将Al/Ni含能多层膜作为电爆炸材料,系统地开展了Al/Ni含能多层
半个多世纪以来,描述生物趋化现象的偏微分方程越来越受生物学家和数学家们的关注。考虑到趋化实验的条件设置和现实生活中的趋化背景,本文主要研究了趋化-流体耦合模型在带有边界的无界和有界区域上的初边值问题,具体研究内容如下:1.研究了三维带边无界区域上的趋化-Navier-Stokes耦合方程在Neumann-Neumann-Dirichlet边界条件下的初边值问题。首先利用各向异性的Lp插值不等式和常
电磁积分方程方法因其具有较高的计算精度和较少的未知量,已被广泛应用于电磁仿真设计领域中。使用矩量法离散积分方程会产生一稠密矩阵,为此诸多快速算法被提出以进一步提升了积分方程方法的计算能力。绝大多数快速算法通常用于加速积分方程离散形成的线性矩阵与右端向量之间的乘积。所以这些快速算法常结合迭代方法,求解积分方程离散形成的线性矩阵方程。然而,迭代方法仍然有严重的弊端。首先是对于复杂问题,迭代方法的收敛很
随着当代武器装备和电子器件的迅速增长,例如大功率真空电子器件、军舰和装甲导弹等系统,在微波器件设计、卫星通信及雷达等领域都各自发挥着重要的作用。实际上,这些设备本身表面可能设置有各类天线、传感器等细小装置,同时组成的介质材料往往是各不相同的,使得整个设备的物理特性变得非常复杂,因此具有几何及材料的多尺度特征。此外,在现代战场中,为了发挥不同的战场功效,辐射源的数量变得越来越大,而这导致电磁环境日趋
按疾病诊断相关分组付费(diagnosis-related groups, DRG)和按病种分值付费(diagnosis-intervention packet, DIP)两大医保费用支付方式已开始在我国多地试点实施,住院患者医保费用支付方式改革对医保基金管理和医疗机构运营将产生重要影响。药品费用作为医保费用的重要组成部分也成为医保管理部门及医疗机构的关注重点,但DRG和DIP对于药品费用的影响程
随着计算机技术的革新和工程应用的实际需要,人们对于反散射问题的研究不再仅仅限于理论上的分析,更多的时候人们希望能够有效的数值模拟反散射问题的解。然而,与正散射问题相比,反散射问题往往是不适定的,即问题解的存在性、唯一性和稳定性总是被破坏。另外,在数值求解算法上,反散射问题与正散射问题也有很大不同。本文以统计计算方法作为基本反演手段,对声波和弹性波中几类反散射问题的求解进行了研究。研究的主要内容和成
分数阶微积分至今已在粘弹性力学、系统控制、图像处理和金融工程等诸多领域取得重要应用,但令人遗憾的是只有少数分数阶偏微分方程能够求得解析解。因此,分数阶偏微分方程的数值解法受到许多学者的关注。由于分数阶微分算子的非局部性,分数阶偏微分方程的数值离散系统往往是稠密的,这使得传统解法的求解效率大幅降低。因此,开发出高效、可靠的算法来求解这些离散系统具有重要意义。针对几类分数阶偏微分方程的数值离散系统,本
关键基因指的是对生物的生命活动至关重要的基因,其包括影响某种生命活动的重要基因,这部分基因可以决定生物体的特定表型或者对于特定环境的适应性。关键基因也涵盖直接影响细胞或个体生长发育的必需基因,本文涉及的必需基因都是指细胞优化条件下生长所必需的基因。本论文围绕原核生物和真核生物的两类关键基因,进行了一系列创新性研究。本论文首先对原核生物中好氧微生物和厌氧微生物进行比较基因组学研究。通过基因组、转录组
反散射问题由于其在许多科学和工程领域的广泛应用受到了越来越多的关注。反散射问题通常是不适定的,这使得它在理论分析和数值求解方面存在很多困难和挑战。在实际应用中,由于观测数据有限且有不可忽略的误差和不确定性,而传统的确定性方法通常不能处理反问题解的不确定性,贝叶斯方法将反问题重塑为统计推断问题,并提供了一个系统的框架来量化反问题解的不确定性。本论文立足于贝叶斯方法,围绕几类声波和弹性波反散射问题展开