解无约束minimax问题的凝聚同伦方法

来源 :山西师范大学 | 被引量 : 0次 | 上传用户:yidatian2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Minimax问题是一类典型的非光滑优化问题,广泛应用于工程设计、数据拟合及最优控制等领域基于线性同伦和凝聚函数,本文给出了一种解无约束 Minimax问题的凝聚同伦方法.  在一些基本的假设条件下,以 Pn或某一球形集合中几乎所有的点为初始点,证明了光滑同伦路径的存在性及全局收敛性,当同伦参数趋于0时,同伦路径趋于 Minimax问题的稳定点.在本文构造的同伦映射中,同伦参数同时被用作凝聚函数的光滑化参数,因此在数值计算中可以采用一般的同伦路径跟踪算法,而不需要设计额外的光滑化参数的自适应更新策略.同时,为了改善凝聚函数当光滑化参数接近0时的病态问题,本文给出了一种当同伦参数(即凝聚函数的光滑化参数〉较小时同伦路径跟踪算法的备选数值计算策略(endgame策略),采用牛顿法直接对 Minimax问题的 KKT系统进行计算.初步的数值实验结果说明了本文给出的凝聚同伦方法的有效性和稳定性.
其他文献
目前的许多农村初中,历史教师在教学过程中在尝试开展小组合作学习,但在开展小组合作学习时存在这样一些问题:建立了小组合作学习的平台,但缺乏对学生的指导;小组合作学习未
该文主要讨论了主从递创系统求解问题的一些相关结结果,共分三部分.在第一部分给出了求解双层线性规划问题可转化为求单层规划问题最优解的一个充分条件,从而使求解皮类双层
Navier-Stokes方程的有界古代弱解在参考文献[3]中G.Seregin给出了详细介绍,这对后面研究Navier-Stokes方程第一类奇异点在什么条件下可以成为正则点做出重要贡献;Navier-Stok
该文主要讨论区间算法在几何造型中的应用.具体来说,我们将区间运算应用于多项式公因子的求解,两条区间Bezier曲线的合并,以及区间B-slpline曲线的降阶,对于这些问题的研究结
边长为整数的三角形称为整边三角形,不全等的整边三角形可以有相同的周长,设T(n)表示周长为n的不同的(即互不全等的)整边三角形的个数.一个著名的问题是:给定整数n,如何计算T
领导干部住党校,经常要应付下级的公款吃请并收到纪念品水果等礼物或红包,这种现象已成为公开的秘密。湖北省纪委办公厅最近转发黄冈市纪委的规定,要求严肃查处这一现象。湖
该文主要讨论风险理论中的破产概率问题,首先研究了经典风险模型(复合Poisson风险过程)中的破产概率的双边界.给出了当理赔分布的积分尾分布属于NWU或NBU分布族地,破产概率的
犹豫模糊集是处理犹豫性,不确定性知识的重要数学工具.多属性决策问题是犹豫模糊集应用的一个重要领域^本文主要提出了犹豫模糊多属性的决策算法,并将其应用到犹豫模糊多属性决
该文首先给出了如何应用Gibbs sampler对一类特殊线性动态模型进行贝叶斯推断,并对滤波过程进行了改进,然后,该文对非正态、非线性状态空间模型使用Gibbs sampler进行了处理,
本文研究了两类具有时滞的 HIV模型的动力学行为。  第一章绪论,介绍了本文的研究背景以及所用到的一些预备知识.  第二章考虑了一类具有时滞和两种传染模式的 HIV模型的