线性性质在数学规划中的一些应用

来源 :西南大学 | 被引量 : 0次 | 上传用户:dys206
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
线性规划与非线性规划是数学规划中的两个对应类别,前者研究得比较完善了,对后者的研究也取得了巨大成就,但仍然存在大量的不足。利用线性规划求解非线性问题,一直是研究者们努力的一个方向,本文也尝试着进行了一些工作:   (1)探讨了最优解的本质属性和映射不变性。如果数学规划建立在Rn上,其目标函数是f(χ1,χ2,……,χn),记c=f(χ1,χ2,……,χn),则有隐函数χn=h(χ1,χ2,……,χn-1,c),从而最优解是函数族χn=h(χ1,χ2,……,χn-1,c)中某函数与可行区域的一个交点;在一一映射下,这个交点不可能丢失,也不可能增生;非线性规划问题如果能被一一映射为线性规划问题,那么原问题的最优值一定是映射所得线性规划问题的最优解。   (2)提出了保序线性化方法。它是在探讨了换元线性化的作用和不足之后提出的,其核心是保序一一映射,将某些非线性规划完整、精确地转化为线性规划,再由逆映射求得原问题全部最优解的精确值。也即是寻找到一种方法,在结构意义下界定某一个规划问题为线性规划或非线性规划。   (3)改善了一类二次约束二次规划问题的求解策略。从序列二次规划的角度,具体讨论了某几种二次约束二次规划问题的保序线性化求解。具体给出了若干例子,包括非凸、非有界的问题,由其本身构造出保序或者保反序一一映射,转化为线性规划问题,成为凸的、有界的;采用Lingo12.0软件对转化前后的问题进行了对比计算。   (4)研究了最小p乘问题的若干线性性质。受到上述启发,特别分析了最小二乘法与最小一乘法在残差向量空间上的联系,指出了最小一乘原则下最优残差向量存在的必要条件和充分条件。然后分类给出了求解最小一乘法问题的新的具体方法。同时随机构造了若干算例,由Lingo12.0软件用传统算法进行了对比计算。
其他文献
《中国共产党党内监督条例(试行)》明确规定,党内监督的重点对象是党的各级领导机关和领导干部,特别是各级领导班子的主要负责人。所以,各级领导干部,特别是主要领导干部,必
非线性距离度量框架是近年发展起来的非线性系统鲁棒控制设计与分析的有力工具。在这一理论下的研究还远未完善,有待解决的问题不少。本文在非线性距离度量框架下考虑了非线性
阅读教学教师不能仅仅关注教材中的文字,更要让学生聚焦插图中,真正高效地走进文本,走进课文,从而提升阅读教学的整体效益。因此,本文提出:激活期待,运用插图激发语言学习的主动意识
据《Scientia Horticulturae》的一篇研究报道(2013.11.020),来自以色列沃尔卡尼农业研究组织中心的人员用细胞分裂素(BA)和赤霉素GA4+GA7的混合物处理发育中的“粉红女士”
对自然科学与工程计算中的许多实际问题进行数值模拟时,最终都归结于求解一个或多个大型稀疏矩阵的线性代数方程组,比如油气资源开发、模拟核爆炸、数值天气预报、数值风洞等.
本文主要讨论了密码(H)-富足半群的结构与同余.确定了完全(J)-单半群的Rees矩阵表示,给出了密码(H)-富足半群的一个结构,然后刻画了密码群并半群上的最小Abel群并半群同余,全文
众所周知,分数阶微分方程的研究遍及物理、生物和工程等众多领域。近年来,人们发现,某些反常扩散现象可以用分数阶微积分来描述,于是衍生出很多分数阶反常扩散方程。与此同时,人们
本文主要考虑如下椭圆方程(P)(公式略)   其中Ω是RN中一个有界光滑区域,N≥1,p>1,λ是一个实数,f,g:Ω×R→R   关于t是局部Lipschitz函数并对于所有x∈Ω,t∈R和某一常量C>0
将口译训练应用到高中英语教学中,对提高学生的英语应用能力发挥着重要的作用,能够提高学生的英语综合能力。口译训练的过程能够促进学生对于课本知识的理解,通过适当的口译
目前中国电子商务已经进入了一个稳定的发展时期,但区域发展呈现不平衡的情况,本文就益阳地区中小企业电子商务应用现状和存在的问题展开分析,提出一些电子商务发展的思路,以