妙用构造法 巧解极值题

来源 :中学教研 | 被引量 : 0次 | 上传用户:a1a1a1a1a1a1a1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在数学解题中,当由条件到结论的常规定向的思考方法不能解决问题时,我们只要改变思维方向,换一个角度思考,常能找到一条绕过障碍的新的途径,构造法就是这样的一种手段,从下面两道极值题解答中,可以看到妙用构造法的巧妙之处。例1 如果实数a,b,c,d满足 a~2十b~2+2a-4b+4=0, c~2+d~2-4c+4d+4=0。求u=(a-c)~2+(b-d)~2的最值。分析:该题若用常规的代数方法会到处碰壁。换一个角度看问题,用解析法考虑:注意到(a,b),(c,d)分别是圆 (a+1)~2+(b-2)~2=1, (c-2)~2+(d-2)~2=4上的任意一点,则已知条件恰是这两圆之方程,而u=(a-c)~2+(b-d)~2恰是这两点间距离的平方,构造一个几何“模型”,在这个模型 In the mathematical problem solving, when the conventionally oriented thinking method from the condition to the conclusion cannot solve the problem, we only need to change the direction of thinking and think in a different way. We can often find a new way to bypass the obstacles. The construction method is like this. One means, from the following two extremum questions, can be seen in the clever use of the construction method. Example 1 If the real numbers a, b, c, d satisfy a~2, then b~2+2a-4b+4=0, c~2+d~2-4c+4d+4=0. Find the maximum value of u=(a-c)~2+(b-d)~2. Analysis: If you use a conventional algebraic method, the problem will hit you everywhere. Look at the problem from a different perspective and consider it analytically. Note that (a,b) and (c,d) are circles (a+1)~2+(b-2)~2=1, (c-2) respectively. For any point on ~2+(d-2)~2=4, the known condition is exactly the equation of the two circles, and u=(ac)~2+(bd)~2 is the distance between these two points. Squared, construct a geometric “model” in this model
其他文献
设问是初中数学课堂教学中的重要手段。而教帅应依据什么设问?该怎样设问?一般设问可分为几种类型?各类设问要达到什么目的?是设问的关键所在。本文就此作一浅谈,以抛砖引玉
<正>~~
期刊
学生的过去“经验”包括两方面:一方面是学生日常生活经验,另一方面是学生在学校学习过程中已获得的知识、技能。这两方面的经验是学生顺利掌握数学新概念的重要条件和心理活
隐患一早就已埋下,朱耀明庄股崩盘只是导火索。