切触有理插值相关论文
切触有理插值函数的算法大都是基于连分式进行的,其算法的可行性大都是有条件的,且有理函数次数较高,计算量较大.文章利用拉格朗日......
众所周知,有理插值方法在计算数学中具有举足轻重的地位,而对切触有理插值理论的研究同样具有实际意义。本文主要讨论了超球面上插......
建立在复向量Samelson逆(也称广义逆)基础上的向量有理插值(GVRI)由Wynn(1963)首先提出,并由Graves-Morris等(1983)在实用背景(如......
本文通过引入多项式形式插值算子及待定的参数,用凸组合方法来构造切触有理插值函数。对所构造的切触有理插值函数,还可通过选择参数......
Avrarn Sidi首先提出了一类牛顿型的向量有理插值,它具有可迭代,插值点可重复等许多优点.本文在此基础上进行了推广,在引入了Lagrange......
学位
有理函数插值理论及其应用是有理逼近研究的重要组成部分,其在唯一性、算法及误差估计等方面均取得了很多研究成果,尤其在算法的研......
在近年来的一篇文章“An extended rational interpolation method”中,Hosseini和Jafari提出一种拓展的有理插值方法,作者称该方......
熟知的矩阵切触有理插值的方法都与连分式有关,不仅计算繁琐,而且难以避免出现“极点、不可达点”。用网格点构造有理插值基函数,用型......
通过引入二阶插值算子,给出了一种较为简便的构造切触有理插值的新方法和一个新型的切触有理插值公式.如果用该方法所得到的插值函数......
本文讨论了矩形网格上互为对偶函数的切触有理插值函数的联系及其唯一性问题。...
文章讨论了矩形网格上Thiele-Thiele型二元分叉连分式切触有理插值函数及其对偶函数的唯一性问题,并探讨了互为对偶的切触有理插值......
针对传统连分式插值,计算复杂度高,计算过程中分母为零的不可预知性及插值函数不满足某些给定条件,应用不方便等问题,利用已知节点......
有理插值是函数逼近的一个重要内容,而降低切触有理插值的次数和解决切触有理插值函数的存在性是有理插值的一个重要问题。切触有......
文章首先将插值节点进行分块,对每块节点作Hermite插值多项式,并利用其剩下的节点作最高次项系数为1的代数多项式;其次对分块Hermi......
针对目前高阶导数切触有理插值方法计算复杂度较高的问题,利用多项式插值基函数和多项式插值误差的性质,给出一种不仅满足各点插值......
本文将在切触有理插值中起重要作用的Salzer定理推广到了多元向量的情形。...
通过引入二阶插值算子,给出了一种较为简便的构造切触有理插值的新方法和一种新型的切触有理插值公式。如果用该方法所得插值函数......
在近年来的一篇文章"An extended rational interpolation method"中,Hosseini和Jafari提出一种拓展的有理插值方法,作者称该方法的......
与插入内推的牛顿公式,我们构造基于的一种块像牛顿的相配的接吻的插值。插值提供我们为作为它的特殊情况包括广泛的牛顿多项式插值......
Graves-Morris从1983年起在实用背景下比较系统研究了一元向量有理插值问题,建立了一些插值理论与方法,文章利用Samelson逆变换,构造了一种新的向量有理插值方法......
该文构造了一种混合的切触有理插值,其表示形式类似于Hermite多项式插值;与传统的切触有理插值相比较,该文提出的构造方法将连分式切......
文章利用分块的思想将连分式切触插值与Lagrange多项式相结合,构造了一种基于块的Lagrange-Salzer混合切触有理插值。该有理插值具......
已有关于高阶导数有理插值方法的研究大都是基于广义范德蒙逆矩阵的思想,计算复杂度较高.本文利用埃米特插值基函数的方法和多项式......
提出了一种基于Taylor算子的二元向量切触有理插值的新方法.首先应用已知的节点定义各阶有理插值基函数,再用相应的向量值和各阶偏导......
将插值节点进行分段,利用分段Hermite插值多项式及相应的多项式,采用线性组合方法得到一般切触有理插值函数的表达式,还可方便地给......
切触有理插值是函数逼近的一个重要内容,而降低切触有理插值的次数和解决切触有理插值函数的存在性是有理插值的一个重要问题.切触......
切触有理插值的构造方法大都是基于连分式进行的,其算法可行性是有条件的,且计算量非常大.利用Hermite插值基函数的方法和多项式插值......
随着多项式插值理论的日趋完善,人们发现多项式插值并不能总是很好的解决问题。对于一类有极点的函数来说,用多项式逼近的效果并不好......
本文针对有理插值问题的起源与发展,作了简要说明。介绍了有理插值问题的提法和有理插值解的存在唯一性定理,列举了一些有理函数插值......