强极值原理相关论文
每一个定义在开区域Ω上的正值实函数γ都能导出一个定义在(e)Ω上的Dirichlet-to-Neumann映射Aγ,与此相关的一个反问题是给出Aγ......
偏微分方程在工程技术科学与自然科学中的应用很广泛,许多工程技术问题须转化为求解偏微分方程的问题,因此对于偏微分方程的研究具有......
由于一些本质困难,N=3被称为具Sobolev临界指数2^+的Dirichlet问题-△u=λu+|u|^2+-^2u,x∈Ω包含R^N;u(x)〉0,x∈Ω;u=0,x∈ Ω的临界维数......
利用山路引理和强极值原理证明了一类具Sobolev临界指数Dirichlet问题正强解的存在性,将Brezis和Nirenberg的相关结果延拓到该椭圆......
用全新的方法证明了新形式的二阶完全非线性微分算子的强极值原理....
讨论带约束的双调和方程{△^2U=λf(x,u)x∈Ω,1/2∫Ω|△u|^2dx=a,a>0,u|■Ω=△u|■Ω=0,其中Ω是R^N(N>4)的一个具有光滑边界的......
主要研究了含临界项与奇异项的拟线性椭圆方程,通过证明一个强极值原理,结合集中紧性原理,克服了非线性算子带来的困难,最终获得了......