变分互补问题的磨光方法和预解算子方法研究

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:xiaofeidong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  本文对Rn中的非线性互补问题(NCP(F))的磨光方法和Hilbert空间中的广义混合变分不等式问题(GMVI)的预解算子方法进行了研究,提出了两个改进方法,证明了改进后方法的收敛性并对其收敛速度进行了估计.论文共分三章.   第一章主要介绍磨光方法和预解算子方法的研究现状.此外,简要介绍了本文的主要工作以及所需的预备知识.   第二章研究了求解NCP(F)的磨光方法.   第三章研究求解GMVI的预解算子方法.
其他文献
图的染色问题是图论的主要研究课题之一,本文就临界图边数的下界,1-平面图的边染色以及图的列表全染色和列表边染色做了一些研究.本文所考虑的图都是有限无向的简单图.  若
学位
预习是指让孩子在老师上课之前自己先熟悉教材,了解相关的知识,思考解决问题的方法,是一种重要的学习方式。简单的问题学生自己解决,培养了学生的学习能力,同时为有限的课堂
  本文首先将定义在闭凸多面锥上的广义互补问题(GNCP)转化为一个光滑的非线性方程组问题,然后利用阻尼高斯牛顿算法(DGN)来求解该非线性方程组.我们对算法的收敛性作了分析
本篇硕士论文主要研究组合数学中vanderWaerden数和Ramsey数。它以广义vanderWaerden数的上界,圆周上vanderWaerden数的上界和Ramsey数的新上界公式作为研究目标和研究重点。
本文主要研究了三正则无爪图的负控制数和符号控制数;图的罗马控制数;研究了三正则无爪图的负控制数和符号控制数,研究了图的罗马控制数,主要得到以下结果:定理2.3.1若G是阶数为n
本文就Hermite型矢量插值细分方法及应用进行了深入系统地研究,其主要内容包括:一阶和二阶Hermite型矢量插值细分曲线及其几何特征的生成,四边网格上的Hermite型矢量插值细分曲
随着人口老龄化进程的加快与家庭养老功能的弱化,社会急需大量高素质养老服务专业人才.加强养老服务人才队伍建设是我国目前应对人口老龄化亟待解决的问题.本研究在对杭州市
《数学课程标准》中明确指出:数学教学是数学活动的教学,是师生之间,学生之间交往互动与共同发展的过程。数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发
小组合作学习是新课程改革所提倡的一种学习方式,对提高课堂的教学效率、改善教学效果起到十分很重要的作用.本文分析了物理课堂教学的小组合作学习方式,对如何利用小组合作