平面向量中三点共线的证明及其应用

来源 :考试·高考数学版 | 被引量 : 0次 | 上传用户:Iknowyou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  利用平面向量证明三点共线是一种常见的较为简单的方法(相对于用斜率、距离、直线、定比分点等的证明方法),但学生对三点共线的应用大都不太熟练,在这里做一个整理,共广大师生参考.
  定理1:向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.
  定理2:设a=(x1,y1),b=(x2,y2),其中b≠0,当且仅当x1y2-x2y1=0时,向量a与b(b≠0)共线.
  推论1:设: c与d为不共线向量,若向量a=x1c+y1d(x1,y1∈R)与b=x2c+y2d(x2,y2∈R)共线,则有x1y2=x2y1=0
  推论2:已知不共线向量OA,OB,OC,且OC=λOA+μOB,则A,B,C三点共线的充要条件为:λ+μ=1(λ,μ∈R)
  一、 证明三点共线
  例1 已知三点A(-1,-1),B(1,3),C(2,5),证明A,B,C三点共线.
  证明:∵A(-1,1),B(1,3),C(2,5)得AB=(2,4),AC=(3,6)
  又2×6=4×3 ∴A B∥AC(由定理2),
  又直线AB,与直线AC有公共点A,故A,B,C三点共线
  例2 设AB=a+5b,BC=-2a+8b,C=3(a-b)
  求证:A,B,D三点共线
  证明:由AB=a+5b,BC=-2a+8b,C D=3(a-b)得
  AD=AB+BC+CD=2a+10b=2AB,故AD∥AB(由定理1)
  又直线AB,与直线AD有公共点A,故A,B,D三点共线
  二、 三点共线的应用
  (一) 题中共线条件明显,学生较为容易入手.
  例3 若a,b是两个不共线的向量,a与b起点相同,则当t为何值时, a,tb,13(a+b)三个向量的终点在同一条直线上?
  解 设:OA=a,OB=tb,OC=13(a+b)则
  AC=OC-OA=-23a+13b,AB=OB-OA=-a+tb
  由于A,B,C三点共线,有-23t=-13(由推论1),即t=12
  因此,当t=12时,a,tb,13(a+b)三个向量的终点在同一条直线上.
  例4 设OA=(1,-2),OB=(a,-1),OC=(-b,0),(a>0,b>0),O为坐标原点,若A,B,C三点共线,则1a+2b最小值为
  解 由OA=(1,-2),OB=(a,-1),OC=(-b,0),得
  AB=(a-1,1),AC=(-b,-1,2),由A,B,C三点共线,得
  2(a-1)=-b-1(由定理2),即2a+b=1,又a>0,b>0
  故1a+2b=1a+2b(2a+b)=ba+4ab+4≥24+4=8,
  当且仅当ba=4ab,即a=14,b=12时取等号.
  ∴1a+2b最小值为8.
  (二) 题中共线条件不明显,学生较难入手.
  例5 如图,在△ABC中,AN=13NC,P是BN上的一点,若AP=mAB+211AC,则实数m的值为
  例5图
  解法1:设:AB=a,AC=b,则
  BP=AP-AB=(m-1)a+211b,
  BN=AN-AB=14AC-AB=-a+14b,
  由B,N,P三点共线,得
  14(m-1)=-211(由推论1),即m=311
  解法2:由AP=mAB+211AC,AN=13NC,得
  AP=mAB+211AC=mAB+811AN
  由B,N,P三点共线,得m+811=1(由推论2),即m=311
  说明:图中B,N,P三点共线是关键.
  例6 如图所示,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同两点M,N,若AB=mAM,AC=nAN,则m+n=
  例6图
  解法1:令AB=a,AC=b,则AO=12(AB+AC)=12(a+b)
  MO=AO-AM=12(a+b)-1ma=12-1ma+12b
  MN=AN-AM=-1ma+1nb
  由M,Q,N三点共线,得
  12-1m1n=12-1m(由推论1),化简得
  12m+12n=1mn,即m+n=2
  说明:图中M,O,N三点共线是关键.
  解法2:∵O是BC的中点,∴AO=12(AB+AC)
  由题意AB=mAM,AC=nAN,得AO=m2AM+n2AN
  又∵M,O,N三点共线,∴m2+n2=1(由推论2)即m+n=2
  说明:巧妙灵活地使用三点共线的结论,在解题的过程中能起到事倍功半的作用.(例5,例6的解法2)
  在学习过程中,我们要善于思考、善于总结、善于整理,这样才能更好地理解问题,更好地解决问题,并能灵活地应用问题.
其他文献
因为金发碧眼,我永远也没办法成为一个汕头人,不过,外国人的长相丝毫不影响我像一个本地人那样吃。我不会讲汕头话,这种潮汕方言就连其他地方的中国人都觉得很难学会。不过,
光合作用——地球上最伟大的化学反应,世界上的生物化学家们已经进行了几百年的研究,结果表明,它必须经过两个必不可少的步骤才能完成。第一阶段,叶绿素有选择地收集可见光光
衔接教育是初中历史学科素养教育的起点,是第一次的感知;常规教学是对学生学科素养的进一步培养与矫正,是学科素养的内化。 Cohesion education is the starting point of t
采用沉淀法制备了经Al、Cr、Cu和Zn等掺杂的Ni/SiO2催化剂,用于甘油与乙二胺固定床气相催化缩环制2-甲基吡嗪(2-MP),并详细考察了催化剂焙烧温度、反应温度、载气空速和原料
我是一名高中思想政治教师,在我的思想政治课上,会怎么进行文学赏析活动呢?那时,我正好执教高中思想政治必修三《文化生活》第一单元第二课《文化塑造人生》。优秀的文化可以
孤独症谱系障碍(ASDs)是一类起源于婴幼儿时期的精神发育性疾病,以社会交往障碍及刻板行为为主要特征。近年来,发病率呈逐年上升趋势。大量研究证实,孤独症谱系障碍为遗传因
2013年12月5日,中国华西企业股份有限公司第十二建筑工程公司总经理潘月亮、副总工程师邓旭东、项目经理袁刚,出席了2012-2013年度中国建设工程鲁班奖表彰大会,十二公司再一
欧债危机下,欧洲经济日益疲软,中国的新能源买家纷纷将目光锁定那些面临破产的欧洲新能源公司。渣打银行首席经济学家杰拉德·莱昂斯最近表示,“我们正从‘中国制造’阶段进
神入历史最早是由国外提出的,主要是英美两国。近年来,神入历史的教学理念传入中国,大陆和台湾都分别对其进行了研究。现从对神入的认识、教学探索两个方面进行比较。一、对
开业指导专家认为,对于刚毕业的年轻人而言,梦想与激情就是他们创业的最大资本。尽管如此,也不可盲目创业。有创业的激情和胆识是好事,但一定要理性。在进行决策前最好问自己