【摘 要】
:
本文主要讨论了几类泛函微分方程的周期解的存在性问题。 在第一章中,我们利用重合度理论讨论了一类二阶多偏差变元的泛函微分方程 x″(t)+f(t,x(t),x(t-T0(t)),x′(t))+sum from j=1 to n g(x(t-Tj(t)))=p(t)的周期解存在性问题,并探讨了周期解存在性与偏差量Tj(t)之间的关系。 在第二章中,我们再次利用重合度理论探讨了一类具复
论文部分内容阅读
本文主要讨论了几类泛函微分方程的周期解的存在性问题。 在第一章中,我们利用重合度理论讨论了一类二阶多偏差变元的泛函微分方程 x″(t)+f(t,x(t),x(t-T0(t)),x′(t))+sum from j=1 to n g(x(t-Tj(t)))=p(t)的周期解存在性问题,并探讨了周期解存在性与偏差量Tj(t)之间的关系。 在第二章中,我们再次利用重合度理论探讨了一类具复杂偏差变元的泛函微分方程x″(t)+f(x(t))x′(t)+bx(t)+g(x(t-T1(t,x(t),x′(t))),…,x(t-Tm(t,x(t),x′(t))))=p(t)的周期解存在性问题。林壮鹏等人已在文[5]中讨论了该方程,本章进一步深入探讨,从本质上改进和丰富了文[5]的相应结果。 同时,据作者所知,对于变系数方程组的周期解问题,也已有一些结果出现,但利用Fourier级数理论来研究的相对来说还很少,只有鲁世平在文[8]中利用级数讨论了NFDE周期系统d/dt(x(t)-Cx(t-T))=Ax(t)+Bx(t-T)+f(t,xt),但该文的A为常数矩阵。在第三章中,我们主要利用Fourier级数理论探讨系统 x′(t)=A(t)x(t)+f(t,x(t-T-(t)))的周期解存在性问题,并给出了其解的界的估计。
其他文献
本论文通过计算双曲空间中子流形的第二基本形式模长平方的拉普拉斯和引进一个新的自共轭二阶算子,利用Stokes定理和Hopf定理得到了子流形的一些拼挤定理和刚性定理。主要结论有: 1.得到了双曲空间中具有常平均曲率的超曲面关于第二基本形式模长平方的拼挤定理,并得到了该超曲面同时满足截面曲率非负时的刚性定理; 2.得到了双曲空间中具有常数量曲率的超曲面关于第二基本形式模长平方的拼挤定理和同
本文的主要工作包含两部分。第一部分关于整数环Z上的同余式2n-2≡1 mod n的解。加拿大数学家Richard.K.Guy在他的名著《Unsolved Problems in Number Theory》的第二版(1994)和第三版(2004)中都提到问题:同余式2n-2≡1 mod n是否有个位数字为9的解?本文先表列出我们用计算机在区间[3,3037000499]上搜索得到同余式2n-2≡1
本文主要研究了响应变量是多维时非线性模型中极大拟似然估计的性质,推广和发展了非线性模型中关于极大拟似然估计的相关结论。全文分为三章。在第一章中,我们首先将响应变量由一维推广到了多维,得出了非线性模型的极大拟似然估计的定义和拟似然方程,然后在一定的条件下,证明了当样本量n充分大时,拟似然方程以概率1有解??n且收敛于参数的真值(即定理1.2),并且给出了极大拟似然估计的渐近正态性(即定理1.3,1.
本文主要讨论了变分不等式理论中的两个方面的问题:解的存在性问题以及解的逼近问题。我们得到了许多新的结果。 首先,我们主要研究了一类广义向量集值变分不等式问题(GVVIP),将文献[7]中给出的向量单值情形下的广义L-条件和广义v-强制条件(C2)推广到向量集值的情形,从而得到(GVVIP)新的解的存在性条件,并将它应用到广义向量相补问题(CVCP)T上。其次,我们研究一类广义集值非线性混合变
随机环境中的随机过程是概率论的一个比较活跃的分枝,随机环境中随机游动是它的一个特例。本文作者在总结已知的研究成果的基础上,进一步讨论了在环境是独立不同分布情形时,直线与半直线上随机环境中随机游动的常返与暂留准则和极限性质;同时还研究了半直线上时间随机环境中随机游动的常返性与极限定理。
本文共分三章。第一章首先证明了关于Hille-Yosida算子的两种无界扰动仍是Hille-Yosida算子的两个扰动定理,然后依此给出了边界扰动抽象边值问题的适定性的两种判别方法。第二章利用算子矩阵的分解分别给出了边界算子无界和有界两种情形下抽象动态边值问题解析性的判别方法。第三章利用算子矩阵和正半群的结果给出了抽象动态边值问题的正性和稳定性的等价刻画,推广了文[5]的结果,作为应用,讨论了时滞
本文主要讨论了θ型Calderón-Zygmund算子交换子的有界性问题。 在第一章里,我们主要利用Hardy空间原子及分子分解理论,证明了θ型Calderón-Zygmund算子T与BMO函数b生成的交换子在Hardy及Herz-hardy空间上的有界性。 在第二章里,我们主要讨论了θ型Calderón-Zygmund算子交换子的弱型估计,即当θ满足一定条件时,[b,T]是Hbp,∞
本文主要讨论了三个方面的问题.在第一章中,我们给出Banach空间中任意Chebyshev子空间上度量投影有线性表示的判据,并讨论了一般有限余维闭子空间上度量投影的具体线性表达式.在第二章中,我们讨论了局部渐近赋范性质之间的关系,并得到了B(X*)一LANP-κ;与C-κ性质的等价性,相应地定义了强C-κ性质,并得到了其与B(X*)-ANP-κ的等价性,从而我们得到自反的一个等价条件.该章还从再赋
设Mm是单位球面上m维无脐点子流形,在M(?)bius变换下有四个基本不变量:M(?)bius度量g,M(?)bius形式φ,M(?)bius第二基本形式B和Blaschke张量A。本文我们首先讨论M(?)bius形式平行的具有常数M(?)bius标准数量曲率的子流形,通过计算A与B模长平方的Laplacian我们给出并证明了相应的刚性定理。其次我们证明M(?)bius形式平行的曲面和一类特殊超曲
半群的范数连续性是一个非常重要的性质,人们一直致力于用半群的生成元及其预解式来刻划却并未能得到满意的结果。本文首先在Hilbert空间下,利用Laplace变换和Fourier变换等方法得到了一个正则半群的表示定理,在该定理的基础上,给出了两个用生成元预解式来刻划正则半群范数连续的充要条件;同时,对C1-正则半群{S(t)}t≥0和C2-正则半群{T(t)}t≥0,我们给出了Δ(t)=S(t)C1