Green算子相关论文
霍奇(Hodge)理论是20世纪数学中最重大的进展之一.著名的Hodge定理表明在紧定向流形M上的所有r阶调和形式构成的空间是一个有限维......
本文分为两个部分,第一部分主要研究多维可压缩流体在非零常状态附近的扰动,考虑的方程包括偶数维可压缩的N-S方程以及多维带阻尼项......
A-调和方程属于非线性椭圆偏微分方程,并在近些年得到深入的研究。对于出现在自然科学和工程技术中的相关微分系统,例如在物理、弹......
将一些经典的积分不等式推广为加权形式是有必要的。这些推广无论在理论上还是应用上都是有用的。本文利用一个新的最广的权函数-A......
本文研究了一类非线性亚抛物方程的Cauchy问题,其中N(u)=λ|u|σu,α>0,λ∈R。在加权Lp空间中,考虑了整体解的存在唯一性和解的渐......
微分形式作为研究当代数学的一个有力工具出现在偏微分方程、代数拓扑、微分几何等许多领域中.同时,微分形式的出现也为数学物理,包......
首先证明了Laplace-Beltrami算子和Green算子复合作用的局部双权范数不等式,并且把它进一步推广到全局的情形.这些结果为进一步研......
函数形式的Poincaré不等式在偏微分方程、位势分析等领域有着广泛的应用.给出LaplaceBeltrami算子和Green算子复合作用下A-调和张......
满足特定调和方程的微分形式的经典范数不等式在偏微分方程、位势分析以及工程技术领域有着广泛的应用.基于满足A-调和方程的微分......