一致有效性相关论文
本文主要利用边界层函数法和微分不等式理论研究若干类具有重退化根的奇摄动问题。第一章绪论部分介绍了本文的研究背景、研究目的......
本文主要研究了一类分数阶微分方程初值问题解的存在性及渐近估计,一类带弱奇异积分核的积分微分方程初值问题解的存在性及渐近估......
本文主要利用匹配渐近展开法和微分不等式理论研究若干带有奇性的奇摄动问题。本文主要包括三个部分:第一章绪论部分介绍了本文的......
研究了一类非线性兰彻斯特方程,描述了现代化战争条件下的战斗模型.在分析实际交战过程中的损耗系数之间的关系的基础上,引入了摄......
利用边界函数法研究了一类二阶半线性系统的奇摄动边值问题,证明了这个问题解的存在唯一性,同时给出了它的一致有效渐近解。......
采用了数值积分方法求解带有奇性的奇摄动边值问题,将原边值问题的一般方程近似转换为带有极小偏差的一阶微分方程,利用梯形公式得出......
给出了细胞繁殖反应扩散型方程的渐近解,并讨论了其一致有效性....
利用边界函数法研究了一类拟线性方程的奇摄动Robin问题,证明了这个问题解的存在唯一性,同时给出了它的一致有效渐近解。......
研究了一类非线性三种群弱耦合捕食一被捕食反应扩散系统的初边值问题,在适当的条件下,利用反应扩散方程理论、多重尺度变量和微分中......
研究了一类拟线性奇摄动Robin问题解的存在性和渐近性态.在适当的条件下,利用边界层校正法构造了问题的形式解,并利用微分不等式理......
建立了带有延迟小参数的兰彻斯特方程,利用时滞摄动理论求出了相应方程的渐近解,从而定量地描述作战双方的兵力变化以及时滞因素对......
讨论了一类具角层现象的奇摄动非线性边值问题。在适当的条件下,利用伸长变量和幂级数展开理论构造出解的高阶形式渐近展开式。最后......
讨论一类奇摄动Kdv-Burgers方程,构造了对应小参数的零次近似解。首先,用黎曼-厄肖恩方法求得外解,得到简单波;其次,用行波法求内......