MORSE理论相关论文
由于在物理学,金融学等领域的研究中表明非局部算子能够充分体现各种实际现象的全局性质,因此涉及非局部算子的微分方程得到数学家......
由于微分方程的稳态解对生产实践有着重要的指导意义,所以在科学研究中人们对一些力学现象建立数学模型后,就需要对相应的稳态方程......
本文主要利用变分法研究了两类分数阶(p,q)-Laplacian方程解的存在性.主要分为两大部分.第一部分研究了次临界增长条件下的分数阶(p,q......
本文利用临界点理论研究了几类非线性椭圆方程非平凡解的存在性和多重性.第二章考虑带参数的半线性椭圆方程边值问题其中Q(?)RN是一......
本文主要研究含自然增长项的拟线性椭圆型方程多重解的存在性,含一般权和Hardy位势的椭圆型方程在新空间中非平凡解的存在性,含临......
本文中,我们应用Morse理论和极大极小方法研究一类半线性椭圆方程Dirichlet边值问题的多解的存在性。 考虑半线性椭圆问题这里......
本文主要研究三类非线性Schrodinger方程多重驻波解的存在性.其中一类是含有势阱的半线性Schrodinger方程,另外两类是拟线性Schrod......
本文主要应用临界点理论,研究了一类二阶差分方程和一阶离散Hamilton系统在渐近线性条件下周期解的存在性与多重性.作者主要是将二......
基于Morse理论,得到了具有不定位势的Schr?dinger-Poisson系统非平凡解的存在性.用更一般的增长性条件来确保Palais-Smale(PS)序列......
本文中,运用变分方法研究如下Kirchhoff型方程的推广其中Ω是RN的非空有界开集,a,b>0,f(x,u)∈C1(Ω×R,R).首先,考虑用Morse理论研究p......
本论文主要研究几类具有共振的差分方程的动力学行为,在特定的假设条件下,我们利用变分法得到了所要研究问题的非平凡解的存在性和......
分数阶p-Laplace算子是一类非局部椭圆算子,这类算子常运用于不同实际问题中,例如最优化问题、相位变换问题、半透膜问题等。解决......
激光雷达(Light Detection and Ranging,Li DAR)是近二十年来快速发展的一种新型、高效的三维空间获取技术,它能直接获取地物表面......
双调和方程边值问题的研究是椭圆型方程边值问题研究的热点之一.利用变分方法对双调和方程在不同非线性项的情况下,研究其高能解、......
在本文中,我们就几类脉冲非线性分数阶微分方程做定性研究.根据脉冲非线性分数阶微分方程非线性项的不同特点,选取了应用变分方法......
本文主要研究了两类拟线性Schrodinger方程与一类Schrodinger-Poisson系统解的存在性,全文分成四个部分.第一章,概述了本文所研究......
本文我们首先研究下面带有临界项的分数阶电磁Schr?dinger方程ε2s(-Δ)sA/εu+V(x)u=λf(|u|)u+|u|2s*-2u,x∈RN.其中ε和λ是两......
本文利用变分法,Morse理论以及临界群在同伦不变式的中保持不变的性质性研究在有界区域上,泛函在非共振条件或者共振条件下基尔霍......
与整数阶微积分相比,分数阶微积分能够更好的描述具有遗传性和记忆性的材料和过程.脉冲微分方程比不带脉冲效应的微分方程能更准确......
在物理和生物领域中常常可以用到拟线性椭圆方程,比如能在非牛顿流体、非线性弹性问题、孤立波的传播现象以及人口动力学等问题上......
在该文中,我们定义了泛函无穷远处的临界值、无穷远处的“可容许对”概念.我们考虑如下形式的泛函:Φ(x)=1/2(Lx,x)+g(x)应用Morse不等......
研究了一类带有脉冲的分数阶微分方程Dirichlet边值问题非平凡解的存在性.通过利用变分法和Morse理论证明了此分数阶脉冲微分方程......
利用极小极大方法、Ekeland变分原理和Morse理论建立了一类具有组合非线性项的四阶椭圆方程的五个非平凡解的存在性结果.......
随着三维扫描技术的逐渐成熟,三维人体扫描模型的骨架提取逐渐成为虚拟人建模研究领域的热点之一。基于三维扫描的人体骨架提取方......
本文主要研究四阶微分方程Neumann边值问题解的存在性与多解性.论文分两部分对两类四阶非线性常微分方程两点边值问题进行了讨论.......
本文主要以Morse理论为基础,结合非线性泛函分析中的拓扑度理论,不动点指数理论,临界点理论来研究四阶微分方程周期边值问题解的存在......
该篇博士论文主要应用和推广临界点理论来研究含有偏差变元非线性微分方程的周期解、多重周期解与次调和解的存在性问题.该文共分......
非线性现象是自然界的普遍现象,非线性问题是自然科学及工程领域的普遍问题,这就决定了研究非线性微分系统的重要性. 对于微分方......
在这篇文章中,我们用Morse理论的方法讨论了一些非对称和带不对称扰动的p-Laplace方程的存在性和多解性.更具体地说,我们考虑以下两个......
本文用热流方法研究辛几何中Salamon-Mundet定义的Yang-Mills-Higgs泛函,并尝试建立相应的Atiyah-Bott意义下的Morse理论。首先我用......
该文应用计算机代数方法,对以下问题进行了研究:1、将Groebner基方法与Morse理论相结合,给出了紧代数流形亏格的一种计算机算法,这......
本文利用变分方法,结合临界点理论和Morse理论,研究了一类二阶渐近线性差分方程组非平凡周期解的存在性和多重性.首先,将差分方程组的......
本文利用变分方法,结合临界群与Morse理论,主要研究了下列两类离散边值问题非平凡解的存在性.即:离散广义Emden-Fowler边值问题{△[......
Morse理论自从20世纪20年代由H.Morse提出以来,有了长足的发展。经典的Morse理论给出了光滑流形的拓扑性质及其上Morse函数的非退化......
非线性哈密尔顿系统一直是数学家和物理学家的重要研究对象.近年来这一领域中的新的研究成果已经在非线性分析、代数拓扑、数学物......
本文利用非线性泛函分析中的变分方法,结合临界点理论,特别是临界群与Morse理论,研究了非线性离散特征值问题Au=λ△F(u) (1.1.1)解的......
微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分......
近年来,随着计算机技术的飞速发展,在几乎所有的数字几何处理中,对原始图像表面网格的重新采样是最基本的工作。有限元方法己经成......
本文综合利用第一章中给出的临界点理论,Morse理论及流不变集理论等非线性分析方法研究了几类非线性边值问题解的存在性,获得了一......
非线性泛函分析具有比较完整的理论体系,不仅可以灵活的应用于工程学,物理学,控制论等应用学科中,而且能够很好的描述自然界中许多重要......
本文研究了一阶和二阶渐近线性哈密顿系统解的存在性和多重性问题.对于一阶的情形,我们用对偶泛函和对偶变分法来研究渐近线性凸哈......
在这篇学位论文中,我们研究RN中的有界光滑区域Ω上的Kirchhoff型问题(公式略).我们分别考虑非线性项f(x,u)在原点是超线性且在无穷......
跳跃非线性问题源于物理学中光波和电磁波的研究,反映了振荡和共振现象,在物理学和经济学等领域都有广泛应用.正因如此,使之成为研......
本文主要利用非线性泛函分析中的变分方法,结合临界点理论,特别是临界群与Morse理论,研究了二阶共振差分方程边值问题(公式略)解的多重......
本文利用临界点理论、最小最大方法、同调环绕、Morse理论及临界群的计算研究了下列二阶非线性差分方程周期边值问题(公式略)。
......
本文主要利用变分法研究了几类非线性椭圆方程的解的存在性及其相关性质.全文分九章.在第一章,我们给出了关于Orlicz空间理论和临界......
考虑以下半线性椭圆方程解的存在性和多重性问题{-△u=λku+g(x,u)+h(x)x∈Ω,u=0x∈(a)Ω,(P)其中Ω(c)RN是具有光滑边界的有界区域,0<λ......
应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J* du-dt = g(t,u(t-r1),…,u(t-rs))其中J*是非奇异2......