矩阵谱相关论文
非线性微分方程(或方程组)是描述物理现象的重要数学模型。它是当代非线性科学研究的一个重要领域。发现和发展非线性微分方程(或......
本文从具有三个位势的4×4的矩阵谱问题出发导出两类非线性发展方程族,并写出其中一类的第一个非平凡的方程是Satsuma-Hirota耦合K......
本文主要讨论有关矩阵谱,拟谱,结构化拟谱的问题。在第一章中,我们根据QR分解引进了两个新的矩阵拟谱,它们修正了存在于[AppliedMathem......
孤立子理论是非线性科学的一个重要方向,在流体力学、等离子体物理,非线性光学、经典场论、化学、通讯、生命科学等诸多学科都有重要......
本文由一个4×4的矩阵谱问题,导出两类与之相联系的新的非线性演化方程,并利用迹公式证明了这两类非线性演化方程具有广义Hamilton......
本文主要研究与一个离散的2×2矩阵谱问题相联系的耦合离散mKdV的达布变换。文中首先构造了这个离散的2×2矩阵谱问题的规范变换,......
本文的主要内容包括: 1.从一个3×3矩阵谱问题出发,推导出广义MKdV方程族,构造此方程族Hamilton结构,证明在Liouville意义下是可积......
本文主要研究一个与3×3矩阵谱问题相关的孤子方程的Darboux变换.文章从孤子方程的Lax对出发通过规范变换构造出了孤子方程的一阶D......
极大代数是研究通讯网络、交通控制、灵活制造等离散事件系统的最常用的工具之一.实际问题所涉及的时间未必是定值,更多的情形是受......
本文主要分为如下两个部分:其一,借助于Lenard递推序列及零曲率方程,推导出与偶的3×3超矩阵谱问题相联系的新的超KdV方程族和超KN......
本文首先从两个连续的2×2矩阵谱问题,KdV谱问题,AKNS谱问题出发,总结它们通过dressing链方法构造出离散方程的过程.在此基础上构造......
研究了热中子反应堆屏蔽准确性优化设计问题。由于传统的反应堆屏蔽计算并未考虑引发裂变的中子对裂变能谱的影响,使得燃耗加深时......