全矩阵代数相关论文
Smash积和Hopf-Galois扩张是Hopf代数理论的两个重要概念,研究Hopf代数的常用方法之一是将其分解为smash积的形式,而Hopf-Galois扩......
刻画矩阵集之间保持不变量的映射结构问题被称为保持问题,通过对保持问题的研究可以得到关于矩阵的不变量、函数、集合和关系等重要......
设R是交换主理想整环,2、3、5为R中的可逆元,n和m是正整数且n≤m.设f是R上n阶对称矩阵模Sn(R)到R上m阶矩阵模Mm(R)上的线性映射,若......
令C是复数域,d是一个整数且d≥3,并且令Matd+1(C)表示由所有元素取自C的d+1阶方阵构成的全矩阵代数.所谓一个Leonard对,就是V上一个有......
本文研究了可换环上矩阵代数的三重导子,通过构造特殊矩阵并利用这些矩阵进行运算,得到任意一个三重导子都可以分解为内导子和倍乘......
探讨了交换半环上全矩阵代数的局部Jordan导子的刻画问题。令R表示2-非挠的交换半环,证明了R上的全矩阵代数Mn(R)上的每个局部Jordan......
研究了有限维 Hopf 代数 H 与其单的模代数 A 的 smash 积的结构。通过给出A 的反代数与其极小左理想的稳定化子的结构,证明了H 与A......
探讨了交换半环上全矩阵代数的广义Jordan导子是否能退化成广义导子的问题.令R表示2-非挠的交换半环,证明了R上的全矩阵代数Mn(R)上......
D是特征不为2的除环,n≥3,Mn(D)表示D上n×n全矩阵代数.刻画了从Mn(D)到Mn(D)的加法满射Ф,对于任意的σ∈Sk(Sk是k元对称群),都有rank......
设H8是非交换且非余交换的8维半单Hopf代数,C[K4]是Klein四元群的群代数,M2(C)是复数域C上二阶方阵组成的全矩阵代数.利用方阵和方阵......
设F是一个特征不为2的域,Mn(F)和Sn(F)分别记F上的n×n全矩阵代数和对称矩阵代数.所有的从Sn(F)到Mn(F)的保群逆的线性映射被......
第六部分代数的形成及发展1代数的发现1.1复数的产生如前述知卡当是第一位引入类如5+√-15,5-√-15的复数的人.接下来Bombelli(蓬......
探讨了交换半环上全矩阵代数的Jordan导子是否能退化成导子的问题。令R表示2-非挠的交换半环,证明了R上的全矩阵代数Mn(R)上的每个Jo......