对偶平坦相关论文
本文主要分为四章,第一章为绪论,介绍Finsler几何的研究概况,以及Finsler度量的一些基础知识.在第二章中,主要讨论一类带双重根号......
芬斯勒几何是没有二次型限制的黎曼几何[1],它在各个方面都有着重要应用.随着研究的深入及对黎曼几何的推广,芬斯勒几何的研究成为......
芬斯勒几何是没有二次型限制的黎曼几何,其理论和研究方法在信息科学和计算机技术等方面有着广泛的应用,成为21世纪微分几何的发展......
芬斯勒几何中的一个重要问题是构造射影平坦和对偶平坦的芬斯勒度量,基于这一点,本文主要研究了球对称的芬斯勒度量,通过求解对偶......
研究和描写Rn中的开子集U上的射影平坦Finsler度量是正则情形下的Hilbert第四问题,它是研究芬斯勒几何的一个重点.而对偶平坦Finsle......
本文研究了一类特殊的射影平坦(α,β)-度量,以及具有对偶平坦的Finsler空间.第三部分得出了Matsuinoto度量F=α/α-β射影平坦充分......
对偶平坦的流形是微分几何中一类重要的研究对象,应用非常广泛,在信息几何,相对论,超弦理论中有重要的应用.沈忠民教授曾从Finsler几何......
芬斯勒几何是黎曼几何的推广,有着更为广泛的实际应用,因此,芬斯勒几何吸引了越来越多的关注,并且已经取得了大量的研究成果.而如何去......
Finsler几何作为一门既古老又新兴的学科,近十几年来快速发展.由于它被视为Rie-mann几何的推广,受到广泛关注并且在其他科学领域得......
本文研究了对偶平坦的芬斯勒度量的构造问题.通过分析球对称的对偶平坦的芬斯勒度量的方程的解,我们构造了一类新的对偶平坦的芬斯......
研究了对偶平坦的Kropina度量的共形性质,利用对偶平坦、共形相关与其测地系数之间的关系,证明了对偶平坦和共形平坦的Kropina度量......
Finsler几何是没有二次型限制的Riemann几何,在Finsler几何中一个很重要的研究课题是对偶平坦的Finsler度量的构造。本文通过对球......