椭圆偏微分方程相关论文
这篇硕士论文主要研究了两类椭圆偏微分方程的解与多重解,主要运用了变分方法的基本方法,如极小极大原理,山路引理等. 在第一章中我......
传统上物理中流体力学,固体力学等问题的解决可归于求解椭圆型偏微分方程,对于物理学研究的一些前沿领域,如压缩体物理学,生物分子动力......
随着以数学为基础的应用科学与工程技术的快速发展,人们对基于大量复杂数据和高维参数的数学模型及其计算有着越来越强烈的需求。广......
本文主要研究具有狄利克莱边界条件的拟线性拉格朗日方程-div((a(x)+| u|γ)|▽u|p-2▽u)+γ/p| u|γ-2 u|▽u|p=λ|u|θ-2 u+| u|......
非结构化网格被广泛地应用到许多科学和工程的数值计算过程中.Delaunay三角形化方法是生成非结构化网格的重要方法之一.这种方法生成......
为了估计多尺度问题解的宏观性质,很多多尺度方法需要在一系列局部区域上求解微观问题。局部问题上人工边界条件的添加会与原始问题......
带有不连续系数的椭圆偏微分方程应用十分广泛,本文针对这种方程设计了两种有效的多层网格方法。一种是基于标准差分方法和斜差分......
解的几何性质是偏微分方程理论中的一个基本问题,而凸性作为重要的几何性质一直以来是椭圆偏微分方程研究的重要课题,蒙日-安培方程......
设F=u+iv是区域D()C上的2p(p≥1)次连续可微复值函数,若F满足p-调和方程△pF=△(△p-1)F=0,则称F是p-调和的,其中△表示复值Laplace算......
对于工程技术领域内的许多力学问题和场问题,人们已经确定了它们应遵循的微分方程(常微分方程或偏微分方程)和相应的边界条件。椭圆型......
由于在生命科学、地球物理、信号/图像处理、材料科学、信息与控制等领域的广泛应用,数学物理中的反问题近年来已经发展成为数学与......
对椭圆偏微分方程参数识别问题进行了研究。受修正的牛顿迭代法的启发,将萨马斯技巧应用于derivative-free Landweber迭代法,提出fro......
首先,建立了晶格Fourier分析的一般理论,并具体研究了六边形区域上周期函数的数值逼近.在此基础上,提出了六边形区域上的椭圆型偏微分......
利用极小极大原理,在共振条件下,证明了一个半线性椭圆偏微分方程Direchlet边值问题广义解的存在唯一性定理,从而推广了已知的一些......
凸性作为一个重要的几何特征,长期以来一直是椭圆偏微分方程研究中的重要主题.本文的主要研究对象是椭圆偏微分方程解的水平集的凸......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
<正> §1 引言 在文[2]中,已就二阶椭圆偏微分方程边值问题研究了三角网域上的广义差分法.本文进一步研究四边形网域上的广义差分......