单位圆盘相关论文
本文主要研究了单位圆盘上一些函数空间的分析性质,主要是以下两个方面,这些结果均推广了已知的结论. 一、函数空间与Cesaro平均.......
本文主要介绍了单连通区域上全纯自同构的拓扑共轭分类.我们说两个变换f:X→X和g:Y→Y是拓扑共轭的,如果存在一个同胚h:X→Y使得h(......
本文研究了两类区域的正规权Bergman空间上的算子.首先,利用Berezin变换、再生核与正规权的估计刻画了单位圆盘D的正规权Bergman空......
本论文分为两部分,第一部分主要研究了一个新的函数空间log B(α,β),并研究了log B(α,β)函数在单位圆盘上的一些分析性质,主要......
本文主要研究了复平面上单位圆盘D上解析函数空间上的α-复合算子.我们这里涉及的空间是Bloeh-型空间Bα和F(p,q,s)空间,其中Bloch-......
任给一个单位圆周到自身的同胚,假设它有两个到单位圆盘的共形自然同胚扩张。利用这两个扩张,本文构造了一族共形自然扩张,证明了它们......
再生核空间是研究数值分析较为理想的空间框架。它的优良数值表现力就在于该空间中存在一个函数,使得对于固定的变量和相应的空间中......
长久以来,研究算子的谱是算子理论中一块重要的内容,它使得人们能够更好地深入探究有界线性算子.在算子理论框架下,本文意在研讨对偶T......
设D为复平面上的单位圆,φ为D到自身的非常数全纯映射.记H(D)为D上所有的解析函数构成的函数空间.由φ诱导的线性算子Cφ:f→fоφ......
设D为复平面上的单位圆盘,φ为D到自身的非常数全纯映射.记H(D)为D上所有的解析函数构成的函数空间。由φ诱导的线性算子Cφ:f→foφ称......
学位
这篇文章分为4章。第1章,我们给出了乘子理论的国内外研究现状和分数次导数理论的国内外研究现状,并给出了我们在第二章和第三章中用......
设F=u+iv是区域D()C上的2p(p≥1)次连续可微复值函数,若F满足p-调和方程△pF=△(△p-1)F=0,则称F是p-调和的,其中△表示复值Laplace算......
本文研究单位圆盘上序解析Hilbert空间及Dirichlet空间的极大不变子空间问题.首先证明了序解析Hilbert空间的极大不变子空间指标为......
关于非线性双曲型系统的Godunov格式的收敛性 rn A. Bressan H. K. Jenssenrn 考虑系统ut+A(u)ux=0, u∈n, 其中矩阵A(u)假设为严......
设0<α<1,用Lipα,β1-α分别表示Lipschitz空间和Bloch空间,给出单位圆盘D上Lipschitz空间和Bloch型空间之间等价性的简单证明,用同......
Schwarz引理是复分析中最重要的定理之一,本文给出了边界型Schwarz引理....
通过研究Bloch型空间B^α(α〉1)的一些性质,给出了加权复合算子Ga,p在Bloch型空间B^α(α〉1)上有界的充要条件.......
研究比亚纯函数更广的一个函数类——K-拟亚纯映射的值分布问题。相应于曾繁富、孙道椿在参考文献[1]中获得的全平面情形的最大型B......
讨论带正规权的加权Bergman空间Ap(φ)上的Carleson型测度,若μ为复平面单位圆盘上的非负Borel测度,证明了μ为Ap(φ)上的消没Carl......
主要对单位圆盘△^1和多圆柱△^n上的Clamped Plate问题或Dirichlet双调和算子的问题进行了研究.得到了单位圆盘△^1和多圆柱△^n上......
这篇文章导出在通用插入内推的序列和一些之间的关系光谱由独立可变 z 的增加操作符的性质以防内在的空间是在开的单位磁盘上分析......
该文讨论了单位圆盘上解析函数的加权代数AP中的闭理想问题,并且利用加权系给出了一个闭理想成为AP中的补子空间的判断准则.......
在这份报纸,我们有关分享的价值讨论正常功能。我们获得 follow 结果。让 F 是在联合起来的圆盘的 meromorphic 功能的一个家庭,并且......
主要研究了单位圆盘上l^2值Dμ,q函数,得到了l^2值Dμ,q函数的收敛性,若f(z)=∑n=1^∞xnZ^n∈Dμ,q,0〈p〈1,q〉2π/μ,则对几乎所有的{ε}有......
主要研究了单位圆盘上Hilbert值Dμ,q得到了Hilbert值Dμ,q函数的Lipschitz条件,若f(x)=∞∑n=1xnz^n∈Dμ,q,0〈μ〉1,q〉2n/μ,则有Ф(z......
单位圆盘的全纯自同构是《复变函数》课程中重要的内容之一,本文给出了单位圆盘的全纯自逆紧映照,其为单位圆盘的全纯自同构的一种......
主要讨论了单位圆盘上从 Hardy 空间到 Bloch型空间上的广义积分算子的有界性与紧性,获得了几个充要条件。......
对Hp,α空间的乘子问题进行了研究,得到了单位圆盘上Hp,α空间到加权Bergman空间Ap,q,β乘子的一个充分条件;同时,还获得Cn中有界......
引进单位圆盘E={z:|z |<1 }内的卷积算子Dα+p-1,构建三维复空间中满足某些条件的复值函数类ψ(α),并得到一个模估计.......
引进单位圆盘内亚纯P叶函数的新子类Tn,p(a;A,B)和Tn,p^+(a;A,B),延伸了亚纯函数邻域的概念。研究了函数f(z)=z^-p+∞↑∑↓m=p amz^(m-p)......
运用Holder不等式、Cauchy公式和Minkowski's不等式的连续形式及单位圆盘上解析函数的次调和性质,得到了单位圆盘上解析函数的几个......
引进了单位圆盘内亚纯多叶函数的新子类Sp(a,c,A,B),并研究了其包含关系和类中函数的积分变换等性质.......
Axler猜想当0〈p〈1时a^p为自共轭空间,随后已证明此猜想成立,并证明了单位圆盘D及有界对称域C^n下加权空间也为自共轭空间a^p,q,α......
令ω为正规权,对于单位圆盘D上加正规权的Bergman空间A_ω~p(D),其上的投影算子为P_ω。现给定一个正Borel测度μ和一个与ω不同的......