高维优化问题相关论文
优化问题普遍存在于工程设计、信息技术、工业生产等科学领域,因而解决优化问题是具有一定的理论意义和实践价值。智能优化算法是......
为了得到高维复杂问题的全局高精度最优解,提出一种动态调整策略,并用该策略改进和声搜索算法。算法选取和声记忆库中最差和声向量作......
提出一种改进的正弦余弦算法(简记为ISCA)。受粒子群优化(PSO)算法的启发,引入惯性权重以提高正弦余弦算法的收敛精度和加快收敛速......
为了更好地提高求解高维复杂优化问题的能力,提出一种动态自适应和声搜索(DSHS)算法。该算法采用正交试验来设计算法的初始化和声记......
针对标准鸡群算法在求解高维优化问题时过早收敛于局部最优和收敛速度慢等问题,提出了一种耗散结构和差分变异混合的鸡群算法.该算......
为了得到高维复杂问题的全局高精度最优解,提出一种动态调整策略,并用该策略改进和声搜索算法。算法选取和声记忆库中最差和声向量......
针对新型混沌蚁群优化算法(CAS)求解高维优化问题时存在的计算复杂和搜索精度低问题,提出了扰动混沌蚂蚁群(DCAS)算法。通过建立蚂......
鸡群优化算法(chicken swarm optimization,CSO)和人工蜂群算法(artificial bee colony,ABC)都是新的优化方法,由于算法简单并且有效,......
现实生活中,在自然科学、工程应用、经济管理等诸多领域的核心问题最终都归结为优化问题。随着技术的发展,“维度灾难”的出现以及......
提出一种基于混沌和精英反向学习的混合灰狼优化算法以解决高维优化问题.首先,采用混沌序列产生初始种群为算法进行全局搜索奠定基......
传统多目标优化算法(Multi-objective evolution algorithms,MOEAs)的基本框架大致分为两部分:首先是收敛性保持,采用Pareto支配方......
本文通过对传统粒子群算法(PSO)的分析,在GPU(Graphic Process Unit)上设计了基于一般反向学习策略的粒子群算法,并用于求解大规模......
工程和科学计算中的很多优化问题从最初的低维优化发展为高维、大规模复杂优化,或常常带有比较复杂的约束条件,因而比较难以求解。......
文化算法是一种新型的全局优化搜索算法,它通过模拟人类社会的演化过程,以及微观和宏观两个层面的进化,可以准确地反应物种的进化规律......
遗传算法是模拟生物界中的遗传进化过程而逐步发展起来的一种自适应全局优化技术,因其在求解高度复杂的非线性问题中具有良好表现......