局部异常因子相关论文
随着航运事业的发展,各航运和港口公司加快了码头的物流运作,导致了停泊作业仓促进行,使船舶发生碰撞事故的风险增加。船舶碰撞事故大......
为保证分布式光伏台区稳定运行,精准有效地划分台区线损数据,提出基于K-Medoids聚类的分布式光伏线损异常感知算法,精准判断分布式台......
公交车时序数据是指在时间上保持连续、一致的由传感器收集到的衡量车身状态的一系列数值。公交车时序数据的正确性对公交车中各种......
作为保障信息安全的一种新手段,信息隐藏近二十几年以来一直受到广泛重视。研究隐写和隐写分析为代表的信息隐藏技术符合国家信息......
星图信噪比是影响星敏感器拍摄星图中星点提取精度的重要因素。软阈值等去噪方法在处理近地面全天时星图时其阈值选取问题引起的噪......
近年来,随着数据库存储技术、计算机科学技术和数据采集技术高速发展,数据库中都积累了大量的原始数据。所以,如何从大量的数据中......
高速铁路以其输送能力大、速度快、便捷、节能等优点,对我国的交通、运输、环境以及经济起着十分重要的作用。随着时代进步,高铁在......
裂缝检测对保障桥梁安全运营具有重要意义。分布式光纤传感器能够采集沿光纤长度分布的桥梁表面应变,即分布式应变。它对结构表面......
地震前兆观测数据是对地震进行分析和预测的重要依据。但是当前往往是以人工处理为主要手段,面对海量的前兆观测数据,迫切需要切实......
为了减少基于密度的异常点检测算法邻域查询操作的次数,同时避免ODBSN(Outlier Detection Basedon Square Neighborhood)中有意义异常......
自主研发绝对重力仪的测量结果中出现的离群程度不同的异常值会直接影响测量结果的准确度和测量精度。目前一般采用的一元正态分布......
在扩展目标产生量测密度差异较大的情况下,传统的基于距离划分的多扩展目标高斯混合概率假设密度(ET-GM-PHD)滤波算法计算量大,跟......
以专利数据分析为基础,首先提取出待创新系统的技术创新要素,形成专利技术创新要素形态矩阵,进而通过局部异常因子分析筛选出某时......
台户关系识别是电网公司实现营配贯通的基础。为此,提出一种基于异常点检测和改进kNN算法的台户关系辨识方法。首先,利用局部异常......
介绍了异常检测技术及算法,并将基于距离的异常检测技术与基于密度的异常检测技术结合起来应用于制造业设备状况和产品质量的实时......
异常检测是数据挖掘中的重要任务,其基本目标是检测出偏离整体数据特征的数据值,同时随着信息技术的发展,现有的异常检测模型已经......
在扩展目标高斯混合概率假设密度滤波中,量测集的划分需要进行大量计算,导致运行效率较低。针对该问题,提出一种新的扩展目标量测......
针对现有离群点检测算法存在参数选取困难、效率差和精度低等问题,提出了基于双向邻居修正的局部异常因子算法。为了解决所提问题,......
风电样本数据的质量和风功率预测模型的结构直接影响风电功率预测的精度,提出一种结合交叉局部异常因子(Local Outlier Factor,LOF......
自动化检定流水线为智能电能表的正常运行提供保障,然而流水线在长期运行中会发生性能退化甚至故障,尤其是表位机械环节的形变与锈......
研究了基于局部异常因子(LOF)的无监督学习模型共享的集成学习异常检测方法,首先在局部采用LOF无监督学习得到检测模型,然后通过交换......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
随着医保制度的不断完善,医保覆盖率的不断扩大,医保基金的正常运转已经与人民大众的切身利益密切相关.然而,频繁就医、分解住院和......
随着社会经济的发展与电力的普及,在电网规模扩大的同时,窃电行为时有发生,电力的损失直接带来了经济的损失,影响电力公司发展。电......
基于密度的局部异常检测算法(LOF算法)的时间复杂度较高,限制了其在高维数据集以及大规模数据集中的使用。该文通过分析LOF算法,引入......
介绍LOF算法、记忆效应以及MELOF算法,对记忆效应进行理论证明,验证MELOF算法的正确性,同时分析该算法的不足和记忆效应的一些特性。......
在航空航天、机械和土木工程等领域中,如果能对重要结构实施有效的健康监测,实时评估结构状况,将能有效保障结构的安全、可靠运行,......
针对图像隐写分析时存在的载体来源失配问题,提出一种结合图像检索和异常点检测的通用无监督隐写取证算法。对待测图像,从图像数据......
为了提高大数据背景下离群点检测方法的准确性和时效性,深入研究并分析了聚类算法的特征,提出了一种基于网格局部异常因子(LOF)算......
异常数据是指在数据集中与大部分数据不一致或者偏离正常行为模式的数据,它往往代表一种偏差或者新模式的开始,因此对异常数据的识别......
网络流量异常问题是网络遭受攻击的一种表现,通常会引起网络丢包、网络延迟、甚至造成网路堵塞和瘫痪,严重威胁着网络性能和安全。......
从高炉煤气生产的实际工况出发,对异常数据产生的原因和特点进行分析。针对现有异常检测方法运算效率低下的问题,提出一种改进的局......
针对常规断路器异常数据检测存在的准确度低、时间复杂度高等问题,引入数据流挖掘技术,提出了一种在滑动时间窗口上的基于局部异常......
最小二乘支持向量机因模型学习过程中以二次损失函数为经验风险,造成学习结果对噪声特别敏感。鉴于实际问题中噪声不可避免、不可......
异常检测是数据挖掘领域研究的基本问题之一,已被广泛应用于气象预报、网络入侵检测、电信和信用卡欺诈侦察等领域.基于密度的异常......
针对电网中的拓扑错误和不良遥测信息严重影响电网的安全运行的现象,提出了基于改进局部异常因子算法的拓扑辨识方法.该方法利用统......
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清......
聚类分析算法是数据挖掘技术的一个重要分支,目前其研究已经广泛应用于教育、金融、零售等众多领域并取得了较好的效果。本文结合......
针对目前流聚类算法无法有效处理数据流离群点的检测和处理,以及增量式数据流聚类效率较低等问题,提出了一种基于密度度量的异常检......
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清......
随着智能电网建设的加强,电力信息网络及其承载的业务系统得到迅猛发展,网络业务流量的检测和预警具有重要的安全意义。针对目前电......
在信息融合领域,利用数据挖掘中的异常检测技术,可以基于目标的多维航迹特征来挖掘目标的异常行为。现有轨迹异常检测方法主要检测......
期刊
针对当前智能配电网传统保护方法存在的整定复杂、配合困难以及适应性差等问题,提出一种基于智能配电网大数据分析的状态监测与故......
针对现有智能配电网保护方法存在保护装置整定复杂、协调性差以及易误动等问题,提出一种基于局部异常因子(LOF)检测的配电网保护算法......