递归数列相关论文
不定方程不仅自身发展活跃,而且全面的应用于离散数学的其它各个领域。它对于人们学习研究和解决实际问题有重要的指导作用。因此,......
由F0 = 0, F1 = 1, Fn + 2 = Fn +1+ Fn ( n≥0)和L0 = 2, L1= 1,Ln + 2 = Ln +1 + Ln ( n≥0)所定义的递归数列分别称为Fibonacci数列......
丢番图方程又称为不定方程,是数论的重要分支,是古老且活跃的数学方向之一。最近十余年,不定方程不仅自身的发展异常活跃,而且全面......
本文将对二次域Q ((3)1/2)中单位Un + Vn31/2 =(2+(3)1/2)n所给出的两个递归数列{Un}、{Vn}中的基本形数--Pronic数、三角数、五角数进......
当D为给定正整数时,不定方程x(x+1)(x+2)(x+3)=Dy(y+1)(y+2)(y+3)的求解是数论中未彻底解决的问题.在前人研究该类不定方程的基础之上,再利用Pe......
对实二次域Q301/2的单位Un + Vn(?)=(11 + 2(?)所给出的两个递归数列{Un},{Vn}中的基本形数(Pronic数、三角数、五角数、七角数)问题进行......
对于形如x~3+1=Dy~2不定方程,本文证明了当D=2×79=158时,不定方程x~3+1=158y~2仅有整数解(x,y)=(-1,0),(293,±399);当D=2×463=9......
数列是高中数学中最重要的知识点之一,也是高中数学联赛的一个必考内容. 确定数列的通项公式,则是数列考查的重点. 此类问题一般表现为......
设p1,p2,…ps(1≤≤4)是互异的奇素数,利用递归数列、Pell方程解的性质证明了当D=2p1p2…ps(1≤s≤4)时,不定方程组x2-14y2=1与y2-......
关于x3±1 =Dy2(D>0)型不定方程的解法还没有一般性的结论;研究D=1 379时不定方程x3±1=Dy2的可解性问题,利用同余理论、递归序列、......
讨论不定方程X3±8=57y2的所有整数解.主要利用递归数列和Pell方程解的性质证明了不定方程X3+8=57y2仅有整数解(x,y)=(-2,0),(169,......
本文将对二次域Q(根号3)中单位U+V根号3=(2+根号3)″所给出的两个递归数列{U}、{V}中的基本形数——Pronic数、三角数、五角数进行......
对二次域Q(√10)中的单位Un+Vn√10=(19+6√10)n所给出的两个递归数列{Un},{Vn}中的Pronic数,三角数,五角数,七角数问题进行研究,给......
关于不定方程x2-1=3py2,x3-27=py2(p为素数),当p≡1(mod6)时方程的求解较为困难,很难找到一个统一的方法把这类不定方程的整数解全部......
当(m,n)=1,m,n∈N*时,形如mx(x+1)(x+2)(x+3)=ny(y+1)(y+2)(y+3)的不定方程已有不少的研究工作.
本文运用递归数列,同余式以......
不定方程是数论中一个重要的研究课题,它与代数、组合数学、计算机科学等学科有着密切的联系,在解决实际问题中发挥着重要的作用。因......
本文将对实二次域Q(√6)的单位Un+Vn√6=(5+2√6)n所给出的两个递归数列{Un},{Vn}中的基本形数(Pronic数、三角数、五角数、七角数)进行......
一个数列的连续项之间的关系叫递归关系.由递归关系确定的数列叫递归数列.中学教材中的等差、等比数列,是最基本、应用最广的递归......
本文证明了Dn是不可约图的充分条件。并讨论了图G=(∪si=1aiD3mi)∪(∪tj=1bjD3nj+1)的伴随唯一性。......
不定方程是数论研究的一个重要分支,不仅其自身发展活跃,而且离散数学的各个领域也有重要的应用,对于解决现实问题有着重要的作用.......
递归数列是高考数列命题的热点.它的方法灵活,技巧性强,学生往往难以把握 .对于常用的等差数列或等比数列可直接求出他们的通项公式,......
首先利用递归数列的方法证明了不定方程x3+1=158y2仅有整数解(x,y)=(-1,0),(293,±399).进而证明了不定方程x3+8=79y2仅有整数解(x......
运用递归数列、 pell方程、 同余式及平方(非)剩余等方法, 证明了不定方程3x(x+1)(x+2)(x+3)=14y(y+1)(y+2)(y+3)仅有正整数解(5, ......
利用同余式、递归序列的方法证明了不定方程x3+8=35y2仅有整数解(x,y)=(-2,0),(3,±1);x3-8=35y2仅有整数解(x,y)=(2,0).......
利用同余式和递归数列的方法,证明了不定方程x^3±8=73y^2无适合gcd(x,y)=1的整数解....
利用Pell方程,递归数列,同余式和平方剩余几种初等方法证明了不定方程x3+27=139y2仅有整数解(-3,0),(13,±4);在证明该结论的过程中......
主要运用Pell方程、递归数列、同余式及(非)平方剩余等一些初等的证明方法,证明了不定方程x(x+1)(x+2)·(x+3)=13y(y+1)(y+2)(y+3)......
利用递归数列与Pell方程解的相关性质和结论,证明了不定方程x3-8=3py2(其中p=5,13,29,37,53,61)当x为奇数时无整数解.......
利用递归数列、同余式和平方剩余证明了不定方程x^ 3+1=19y^2仅有整数解(x,y)=(-1,0)....
本文应用递归数列、同余式证明了丢番图方程x3+1=38y2仅有整数解(x,y)=(-1,0),(31,±28)....
利用递归数列、同余式、平方剩余以及Pell方程解的性质证明了不定方程x^3+1=103y^2仅有整数解(x,y)=(-1,0).......
利用递归数列,同余式证明不定方程x3-1=215y2仅有整数解(x,y)=(1,0),(6,±1)....
利用递归数列,同余式这一新方法证明了不定方程x3+1=35y2,仅有整数解(x,y)=(-1,0)(19,±14)....
利用同余式和递归数列的方法,证明了不定方程x~3-8=65y~2无适合(x,y)=1的整数解....
利用同余式、递归数列的方法,证明了不定方程x^3-8=61y^2仅有整数解(x,y):(2,0)....
设p是奇素数,证明了:当p=108 s2+1,其中s是奇数,则方程x 3+1=py2无正整数解(x,y)....
利用同余式、递归数列的方法证明了不定方程x^3+1=266y^2。仅有整数解(x,y)=(-1,0),x^3+8=133y^2仅有整数解(x,y)=(-2,0),(5,±1).......
利用同余式和递归数列的方法,证明了不定方程x3-8=65y2无适合(x,y)=1的整数解....
利用递归数列和同余式的方法,证明了不定方程x^3+1=26y^2,仅有整数解(x,y)=(-1,0)。......
该文以友矩阵的特征值为基础,讨论了形如"Pn(x)=xn-a1xn-1-a2xn-2-...-an-1x-an"的代数多项式的友矩阵的一些简单性质,并给出了组......