Β)-度量相关论文
局部对偶平坦的Finsler度量起源于信息几何,是一种重要的应用非常广泛的度量.根据局部对偶平坦Finsler度量的定义,研究了一类形如F......
射影几何和共形几何的研究有着悠久的历史,且从一开始就被广泛地应用于物理研究的各个领域。Finsler度量的射影几何和共形几何一直......
Finsler几何是一类不具有二次型限制的黎曼几何.在欧氏空间开域上的典范Finsler度量为Finsler几何研究提供了重要的例子和几何性质......
本文我们研究了一类广义(α,β)-度量F.其通过一个黎曼度量α,一个非零一形式β,和一个光滑函数φ(b2,s)定义.F=αφ(b2,s),b=||β||α,s......
考虑了一类具有如下形式的Finsler度量: 其中是一个Riemann度量,β=biyi是一个1-形式,ε和k≠0是常数.得到了F为局部射影平坦的充要......
研究了两类重要的局部对偶平坦的(α,β)-度量,结合其具有的迷向S-曲率特性证明了局部对偶平坦且具有迷向S-曲率的两类度量一定都......
本文主要针对芬斯勒流形上共形向量场的若干问题进行了研究,其内容涉及广义(α,β)-度量的共形向量场、Kropina度量和Randers度量......
该文就旗曲率、射影变换与共形变换三个方面研究了具有(α,β)-度量的Finsler空间....
对于Finsler几何的研究,现在主要有两种方法,一种是张量的方法,一种是分析的方法,该文主要采用了后者.在Finsler几何中,我们现在已......
(,)a b-度量是芬斯勒几何中一类重要的可计算的芬斯勒度量。本文首先得到了(,)a b-度量的平均Cartan张量的计算公式,并刻画了(,)a b......
学位
随着对黎曼几何研究的深入和推广,芬斯勒几何成为现代数学中的重要前沿学科.其中,包括为人们所熟知的Randers度量在内的(α,β)-度......
芬斯勒(Finsler)几何是现代数学中的重要前沿学科,是其度量无二次型限制的黎曼几何.(α,β)-度量是一类与黎曼度量密切相关的有着......
本文主要研究复(α,β)-度量的几何性质,重点讨论了复Randers度量F=α+|β|、复Kropina度量F=α2/|β|,|β|≠0、复Matsumoto度量F=α2/α-|......
芬斯勒(Finsler)几何是现代数学中的重要前沿学科,在物理学、生物学、信息几何等领域有着广泛应用.本文研究了光滑流形M上一类特殊(......
本文主要讨论了具有迷向S-曲率的拟对称(α,β)-度量的等价条件,并研究了具有迷向S-曲率的拟对称(α,β)度量的一些好的性质.......
研究具有某种(α,β)-度量的Finsler空间的几何性质,给出这类Finsler空间成为Douglas空间的一些充分必要条件。......
本文研究了一类重要的形如F=α+εβ+βarctan(β/α)(ε为常数)的弱Berwald(α,β)-度量.利用S-曲率公式,获得了这类度量为弱Berwald度量......
本文主要研究共形平坦的(α,β)-度量.通过共形相关的Finsler度量间其测地系数间的关系,得到了(α,β)-度量是共形平坦的充分必要条件,......
在n(n≥3)维芬斯勒流形(M,F)上,利用芬斯勒几何的基础知识和基本方法得到了对称芬斯勒度量F(reversible Finsler metric)具有若干很好的曲......
研究了Finsler几何中一类特殊(α,β)-度量-指数度量F=αe^ks的S-曲率性质。笔者通过把指数度量的S-曲率与其特殊S-曲率的表达式进行......
研究了局部对偶平坦的Finsler度量,综合局部射影平坦,局部对偶平坦的性质,得到一个Finsler度量是局部对偶平坦且局部射影平坦的三......
作为著名Hilbert第四问题的正则性情况,局部射影平坦Finsler度量的研究一直是Finsler几何中的重要问题.文中主要讨论一类多项式类......
爱因斯坦度量是Ricci曲率常数的度量以及比爱因斯坦度量更一般的弱爱因斯坦度量,在理论物理中有重要的意义.本文研究一类称为广义(......
爱因斯坦的(α,β)-度量一直是一个重要问题,但由于其具体度量形式不确定,使得研究工作面临重重困难。主要研究了一类度量形式为F=α......
研究了共形平坦的(α,β)-度量F =αφ(β/α),这里α是一个黎曼度量,β是流形上的1-形式.证明了共形平坦的弱Landsberg的(α,β)-度量一......
(α,β)-度量是Finsler几何中非常重要的一类度量,Randers度量是最简单的非黎曼的(α,β)-度量.近年来,很多学者研究了具有特定形式的(......
...
研究具有迷向S-曲率的Douglas(α,β)-度量F=αφ(β/α),其中α=aij(x)yiyj~(1/2)为黎曼度量,β=bi(x)yi为流形上的1-形式.得到其为具有迷向S......
研究了形如F=α+εβ+k(β2/α)(ε和k为非零常数)的(α,β)-度量,其中(α=a_(ij)(x)y~iy~j)~(1/2)为黎曼度量,β=bi(x)yi为流形上的1-形式。得到了这......
随着对黎曼几何研究的深入,芬斯勒几何成为现代数学中的前沿学科。其中,包括为人们所熟知的Randers度量在内的(α,β)-度量是一类在......
本文就广义(α,β)-度量的旗曲率、Ricci曲率以及非黎曼几何量Ξ-曲率和H-曲率的相关问题展开了研究和讨论.首先,本文对广义(α,β......
研究了n-维流形上的两类重要的(α,β)-度量——F=(α,β)^m+1/α^m和F=α+εβ+2β^2/α-β^4(3α^3),证明了这两类(α,β)-度量具有迷向S-曲......
考查了形如F=αФ(β/α),Ф(s)=e^p(s)的一类(α,β)-度量成为Einstein度量的充分必要条件。这里p(s)是关于s的k(k≥1)次多项式,α是一个黎曼度量......
给出(α,β)-度量F=αФ(α,β)的S-曲率的计算公式.证得对一般的(α,β)-度量,当β为关于α长度恒定的Killing1-形式时,S=0.研究了Matsumoto-度......
找到了一组方程去刻画(α,β)-度量F=α+εβ+β2/α(ε为常数)与Randers度量(-F)=(-α)+(-β)之间的射影等价,其中α和(-α)是两......
研究了形如F=αexp(β/α)+εβ的指数Finsler度量,并给出了它为局部对偶平坦度量的条件,其中α是Riemann度量,β为1-形式,ε为常数.......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
研究两类重要的分别形如F=α+εβ+βarctan(β/α)和F=α^2(α-β)+μβ的(α,β)-度量,其中μ≠-1和ε≠0为常数,α=√αu(x)yiyi为黎曼度量,β......
研究两类重要的分别形如F=α+εβ+βarctan(β/α)和F=α^2(α-β)+μβ的(α,β)-度量,其中μ≠-1和ε≠0为常数,α=√αu(x)yiyi为黎曼度量,β......
对称的Finsler度量具有非常好的性质,有重要的研究价值.主要研究了对称的(α,β)度量的曲率性质,得到了对称的(α,β)度量的S-曲率,相对迷......
计算了一类特殊的(α,β)-度量F=α+εβ+κβ^2/α的Ricci曲率,证明了当流形维数n≥3时,若它具有迷向的Ricci曲率,则其Ricci曲率为零.从而......
研究了近似指数度量并得到二阶近似指数度量射影平坦的充要条件是α射影平坦, β关于α平行.且对高阶指数度量也得到了相同的结果.这......
研究一类β关于α是平行的并且Riemann度量α具有常曲率的(α,β)-度量F所具有的一些性质,证明了F要么是平坦平行度量,要么是与Riemann......
针对拟Einstein流形的Hilbert第四问题给出了具有常flag曲率的射影平坦的多项式(α,β)-度量F=α1+∑ni=1aiβiαi的一种构作方法,得......
如果Finsler空间中的测地线沿相同的路径反向也是一条测地线,则称该Finsler空间具有可反的测地线.当流形维数n>2时,已刻画了具有可......