交线相关论文
本文通过对2020年新高考山东卷第16题进行探究,发现这类问题可以通过准确确定“截弧”弧心的具体位置来解决,并在此基础上给出了确......
“辅助平面法”是分析、推理、论证立体几何问题的重要思想方法之一.许多同学受思维局限,在分析问题时往往想不到或忽视了这一重......
所谓“正方体线段”是指以正方体的顶点为端点的线段。本文重点讨论它们之间的异面关系。
The so-called “square segment” re......
习题是教材的有机组成部分。解题是学生掌握知识,培养能力的重要途径。因而教师必须从教材的整体上去认识习题和内容的关系,从学......
求异面直线的距离,在立体几何中是一个难点.怎么求?条件不同,方法各异.很多刊物介绍了其代数和几何求法,下面再介绍几种代数求法.......
请下载后查看,本文暂不支持在线获取查看简介。
Please download and view, this article does not support online access to vie......
三、关于巧添辅助线和辅助面由于在空间中研究问题总不如在平面上研究问题来得简单方便,因此,在研究立体几何问题时常想办法将平......
学习《立体几何》“入门难”。学生在空间想象力上总是“立”不起来,究其原因,首先,学生在初中学过平面几何,头脑里往往受到平面......
在中学立体几何教学中,除了培养学生严密的论证,简明的叙述和正确的计算外,对于培养学生绘制正确空间图形的能力也应予以重视。因......
对物体运动的方向、路径、位置进行准确的分析,这是解决行程问题的关键,下面列举的几例行程问题,貌似简单,但如果不分析讨论其位......
球影子的有关计算,用到立体几何、解析几何、三角中一些基础知识,是一个综合性的应用问题。 1.球影的长和宽 命题1 已知太阳光线......
发表于2009年第2期的《节理岩体体积节理数Jv的新计算公式》一文中的公式推导有误,现更正如下:文中3.1节中,Jv的计算体积应为3条结......
定理:三个平面两两相交于三条交线,这三条交线相交于一点或互相平行。(证明略)在有些解有关三线平行或三线共点的习题时,例1 空间......
高中课本《立体几何》(甲种本)第51面复习参考题A组第10题“三个平面两两相交,有三条交线求证这三条交于一点交互相平行。”(以下......
一次高考考了这么一道题: “已知三个平面两两相交,有三条交线,求证这三条交线交于一点或互相平行。”当时我参加阅卷工作,对卷面......
我们很容易判别一元二次方程ax~2+bx+c=0是否有实根.当判别式⊿=b~2-4ac>0时,有两个不相等的实根,当⊿=0时,有两个相等的实根;当......
§1 垂直要点线线、线面、面面垂直的概念、判定和性质;三垂线定理及逆定理。例1 判断下列命题的正误,并说明理由: (1) 在空间,过......
高中学生感到立几难学,是因为不仅要逻辑推理,还要空间想象。。要突破立体几何这些难点,抓好启蒙教学是很重要的一环。下面谈谈我......
一九八五年省市自治区高中联合数学竞赛第二试第二题:如图1,在正方体ABCD-A_1B_1C_1D_1中,E是BC的中点,F在AA_1上,且A_1F:FA=1:2,......
在立体几何中,常常需要过定点作已知平面的垂线和作二异面直线的公垂线。这样的垂线、公垂线是否存在、唯一?具体作法又怎样?现行......
2月1日,即大年初五,上海首条中运量公交线——延安路中运量公交线71路投入载客试运营。延安路中运量公交线的走向为沪青平公路(申昆......
空间基本轨迹以平面基本轨迹为基础可以对比地逐一得出,一般而言,平面上轨迹若在空间研究,则点变化为相应的直线,直线则变化为相......
二面角的平面角是立体几何中重要概念之一。对二面角的问题,一般是通过找出它的平面角从而将立体问题转化为平面问题来解决,因此,......
关于平面截对顶圆锥的问题,我们的做法主要是基于下面的定理: Desargues定理:若两个三角形对应的顶点的连线共点,则对应边所在直......
’99高考24题:图中虚线 MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为 B 的匀强磁场,方向垂直纸面向外......
借助于某个几何体,以一个专题形式来复习立体几何,虽不能面面俱到,但能把有关知识连成串,对复习基本概念,沟通纵横知识,揭示解题......
用形数结合的方法对放置顼与球 交进行研究。重点了交线的水平投影曲线,得出该曲线为著名的四次曲线-卵殂线族的结论。......
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避......
今年高考立几题阅卷随笔436000鄂州市鄂州高中徐敏鄂州市澜湖中学柏良鄂题目如图,在正三棱柱ABC—A1B1C1中,E∈BB1,截面A1EC侧面AC1.(I)求证:BE=EB1;(Ⅱ)若AA1=A1B1,求平面AlEC与平面A;B;C1所成二面......
1.前言作为前述论文的一八补充。当要求准确并能用一简便法来求相贯线时,作者研究出一种在轴测投影中园柱体和园锥体相贯线的作图......
在平面体的板金工划线工作中,除了需要求出展开图外,还必须求出加工成形用的两面角,以便制造卡角样板.因此,求卡样板角度实际上就......
以圆锥曲线为背景的“恒定”问题,其形式多姿多彩.我们往往可以利用圆锥曲线的定义直接破题.下面我们列举几例,供大家欣赏.
Conic......
补体法,是在给定几何体基础上,通过添补适当的几何体,使之扩展为特征较为熟悉的几何体,进而在更广阔的范围内处理局部问题的一种......
在立体几何有关二面角大小的计算中 ,经常会碰到“无棱”二面角 (棱不在图形中出现的二面角 )的情况 .求解此类问题的方法主要有两......
非均匀有理B样条曲面(NURBS)曲面建立了从二维参数域到三维空间的映射关系,NURBS曲面裁剪的实质就是在保持映射关系不变的情况下,改变曲面的有效参......
正方体是空间立体几何中一个重要的几何模型,那么正方体的截面都有哪些可能呢?我们来研究一下.首先,平面α和几何体相交所得到的平......
立体几何中的求二面角大小问题,是高考重点考查内容,法向量法是求二面角大小的一种主要方法.我们知道:二面角大小与其两个平面的法......
文章对求作与四条直线桕切的球进行了分析与求解,并作出了相应的图解图示。
The paper analyzes and solves the ball which is m......
对于工程设计人员来说,空间轨迹的分析与作图是一个常常碰到的实际问题。本文通过对二、三、四个几何元素成等距的轨迹问题的分析,......