插值多项式相关论文
随着互联网的迅猛发展,安全和隐私问题备受关注。图像作为信息载体,在各个领域应用广泛,如何确保其在网络上进行安全存储与传输,是......
本文提出了一个在三角形上构造C曲面的新方法,新方法构造的曲面片由四个曲面加权平均产生,在三角形的边界上满足给定的边界曲线和......
...
如果工件轮廓线不是由正圆弧段和直线段组成的,这样的轮廓线统称为非圆曲线。图1是把成形车刀,为了使车刀具有一定的后角,切割时......
本文根据天然河道水面线计算的特点,运用分段插值法,以牛顿二次插值多项式替代基本方程式中的断面函数,将基本方程式转化为仅含待......
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7......
期刊
主要研究弱奇异高振荡积分的高效计算方法。首先利用复分析中的柯西定理,将所求积分转化为复平面上的两个线积分,然后利用高斯求积......
在当今高速发展的社会中,随着计算机普及和网络技术的快速发展,多样化的智能手机、各种高端照相机、高端化电子手表等电子产品的广......
对标准铂铑——铂热电偶及标准铜——康铜热电偶的插值计算进行了讨论。在热电偶插值计算中引入代数插值法将会使计算过程大大简化......
本文讨论了一种新的有限元法在计算线弹性断裂力学应力强度因子 K_1上的应用。这种有限元法,允许在每个单元上,其相应的插值多项式......
本文为第三章有限单元法六个基本步骤中的后三个步骤:“单元特性矩阵和单元特性列阵之集合和整体方程之推导”、“有限元方程的解......
第一章插值法(续) §4 逐步播值法和插值误差的事后估计拉格朗日插值公式形式简单,便于计算机计算,但要改变插值的阶数(增加结点......
本文的目的在于研究以第二类Chebyshev多项式U_n(x)的零点为插值结点的Lagrange插值多项式F_n(f;x).首次给出了用插值多项式F_n(f;......
研究了带有π(x)=(1-x~2)P_(n-1)′(x)零点的一类修正型Hermite插值多项式F_(2n-1)(f,x)及其导数的同时逼近问题。得到的结果是:对......
从积分形式的二维Lagrange流体力学方程组出发,使用ENO高阶插值多项式,推广了四边形结构网格下的一阶有限体积格式,构造得到了结构......
传感器输出信号的处理,包括对其输入输出的非线性的校正和干扰变量的影响进行校正。本文讨论了插值多项式的直接应用及如何用插值......
在传统SVM的分类求解算法中,由于严格凸的无约束最优化问题中单变量函数x+是不可微的,不能使用通常的最优化的算法进行求解。三次H......
在以密码学为核心的信息安全的领域中,随机序列扮演着非常重要的角色,随机序列的安全性就确定了整个安全系统的安全性.密码学领域......
随着网络技术及电子技术的发展,人们可以随时随地通过不同的终端链接网络。然而,只有拥有安全高效的通信协议,人们才能更好地享受......
插值逼近是用简单的可计算函数对一般函数的逼近,并进而考虑逼近的程度和如何刻画被逼近函数本身的特性。由于插值多项式结构比较简......
近20多年来,多元多项式插值是国内外研究的核心内容,其中,插值多项式的适定结点组更是研究的重要课题,多元插值适定结点组的深入讨论,使......
Lagrange插值问题是计算数学中的基本问题,其收敛性与收敛速度是人们最关注的.一般情况下这对函数光滑性的要求很高,而常用的一些......
函数逼近论的研究目的为用简单的可计算函数对一般函数的逼近,并进而考虑这种逼近的程度和如何刻画被逼近函数本身的特性.因此当然......
间断时空有限元方法统一时间和空间变量,在时间和空间的两个方向同时发挥有限元方法的优势,实现了时、空两个方向的高精度。同时,间断......
最优化理论与方法被广泛运用于科学,工程,经济学,管理学等许多领域。它使用数学方法来研究各种系统的优化方案及途经,以研究人类对各种......
本文通过构造拟正交多项式的方法证明了各向异性插值误差。同时,本文探索了在二维,三维空间上拉格朗日插值多项式的构造及误差分析。......
本文提出了利用牛顿--柯特斯公式进行数值积分计算时,柯特斯系数的程序设计方法和利用阿达姆斯方法解微分方程时显示阿达姆斯格式......
大家知道,连续小波变换(CWT)的计算一般用数值积分的方法,数值积分的最基本方法是以代数插值多项式为工具,将连续形式的积分问题转......
根据多项式插值理论,可以通过构造相应的插值多项式来逼近未知的目标函数,再进一步求一阶导数,从而得到该目标函数的一阶数值微分......
[摘要]本文根据Vandermonde矩阵的特殊结构和矩阵分解的基本原理给出Vandermonde方程组的矩阵分解算法和算例。算法能有效节约计算量......
Bernstein的一个经典结论是对函数│χ│在[-1,1]上的等距结点组的Lagrange插值多项式序列除了在零点和端点外发散.本文证明对│χ......
通过引入矩阵Padē-型逼近的概念及柯西公式推出了矩阵Padē-型逼近的两种形式的误差公式,并由误差公式引出了矩阵Padē-逼近的概......
利用扩展乘数法建立了Grunwald插值多项式算子逼近全实轴上任意无界连续函数的收敛性定理,给出了具有一般性的结论,从而推广了前人......
本文通过对四次Lagrange插值多项式求二次导数推导出二阶导数的五点数值微分公式,中心点处截断误差为O(h4),其他点处为O(h3). 利用......
<正> 设三角矩阵{χ_k~(n)},κ=1,2,…,的第n行为t1次(?)多项式T_n(χ)=cos(n arc cos x)的根χ_k≡χ_k~(n)=cosθ_k=cos2κ-1/2n......
<正> §1引言 设D为复平面上由可求长闭Jordan曲线为边界所围的区域,(?)为D到单位圆U上的保形变换,其逆变换为.对于0<p<+∞,定......
<正> §1引言 设C_[-1.1]是[-1,1]上连续函数之全体,C_[-1,1]~1是C_[-1,1]中连续可微函数所成之子集.对于,f∈C_[-1,1],记‖f......
本文引进了多元Hermite-Fejer及Jackson插值多项式,并对此二算子进行修正,讨论了其在C空间及带权Orlicz空间中的一致有界性及强收敛性。......