几何解题相关论文
通过对一道几何题的多种解法进行分类,分析解决问题的各种视角,获得结论:条件的推进是产生解决问题不同视角的原因.通过精简图形结构,......
《义务教育数学课程标准》(2011年版)指出:“数学课程不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法”。化归思......
解析几何中许多问题大都涉及到繁难的计算过程,为了尽可能减少计算量,常常需要应用一些技巧和方法.“设而不求”就是其中方法之一.在什......
本文主要结合高中数学几何解题的实际情况,对“数”、“形”结合解题法在几何解题中的具体运用方法进行总结,并通过例题解析的方式......
推理和证明是学习数学所需掌握的基本数学思想之一,但越来越多的解题方法的出现反而会让学生感到迷惑,无从下手。传统的数学教学较......
几何学在实际生活用应用非常广泛,与许多学科有着非常密切的联系,所以我对空间立体几何解题的基本方法加以归纳整理,使学生今后的......
高中数学教材引进了向量知识以后,为我们解决数学问题提供了一套全新的方法——向量法.向量法在解决求立几中的角和距离两大问题中......
在解析几何解题中,大都喜欢用坐标法来思考,坐标法虽然强调了用代数方法研究几何,呈现了解析几何题的通性通法,但其繁杂的运算是避......
在数学中,三角形作为一个基本的图形,题型是多种多样的.而对于几何题来说,无论是它的证明还是计算,解题过程都是比较复杂的.但是如......
旋转变换是几何图形三大变换之一,旋转法是通过旋转变换,使旋转后的图形与原来图形建立起某些联系,即通过图形变换,把条件不明的量......
初中数学中加入了动态的几何部分,这是学生们第一次接触到几何的概念,对于很多同学而言理解起来都存在或多或少的障碍.初中数学中......
学习几何,主要是应用几何定义、公理、定理去论证和解答几何题.但在具体应用几何知识时,往往不是运用文字表述的语言去推理,而是运......
当前教育改革正以一种强势的脚步快速前进着,为我国的教育形式、教育观念、教育目标乃至教育体系的发展和完善,指明了方向,使教育这一......
几何题是高中数学中比较常见的一种题型,同时也是数学学习中的一大难点,在考试中占有大量的分值.但是从当前高中数学学习状况来看,......
摘要 “重合”是数学解题中的一种思考方法,本文将例说“重合”在解析几何解题中的某些应用. 1 点重合的应用 1.1 共点问......
数学思想是数学的灵魂,数学思想方法是解决数学问题的思维策略和钥匙。数学思想方法蕴含于数学知识之中,又相对超脱于某一个具体的数......
1目的rn教学生学会思维,是教学的重要目标.“教师对学生进行思维策略的指导是启发式数学教学的核心关键”.思维能力训练是思维心理......
旋转变换在解题中有两种作用:一种是提供思考途径,另一种是提供解题手段.在几何解题中,巧妙地运用旋转变换解决问题,有时可以达到......
在几何解题中,众多复杂的线,常给学生带来困扰,以致解题困难.通过适当的图形变换,能够另辟蹊径,使学生发现问题的隐含条件,帮助学生抓住......
我们知道,角平分线上的点到这个角两边的距离相等.利用此性质可以省去一次全等三角形的证明,因此在几何解题中可以起到重要的作用.......
发散思维也叫作求异思维,是通过对信息的了解与分析,向着不同的方向探索多样化解决问题途径的思维过程,从而开拓学生的思路、培养......
数学学习中的立体几何模块,是一个很重要的模块,它考验着学生的空间想象能力与逻辑论证能力的结合,也是高考中必出现的一类题目. ......
解析几何与向量是高中数学新课程方案中两个重要的分支内容,数形结合是它们的共同特点.由于向量既能体现“形”的直观的位置特征,......
摘 要:拆图法即将图形整体分解为部分,把复杂的图形分解为简单的图形,分清条件与结论,找出条件与结论之间的关系,以基本图形为基础,完成......
立体几何学习,对许多高中生来说都是一道难以跨越的墙。究其原因,从实践来看,主要是学生在学习中未能解决好两方面的问题:一是空间作图......
初中数学几何题型中包含的知识是多个方面的,为此,学生在解题过程中,不仅需要构建知识之间的联系,还要根据图形与数据建立几何空间......
矢量代数是数学、物理等现代科学研究中的重要工具,它对明确概念,简化公式以及掌握客观规律的实质有较大价值.尤其在几何学中更具......
高中数学课程中几何题是常见的题型,同时也是数学学习中的难点,同学们应当有效掌握数学学习技巧,相应地降低解题难度,从而缓解学习......
数形结合,即“数”与“形”结合起来,进而发挥“以数助形”以及“以形助数”的作用.直观来讲,“数”是“形”的抽象,而“形”则是......
高中立体几何引入了空间向量,大大降低了立体几何解题的难度.随着新课程改革的进行,向量的应用将会更加广泛,这在2007年高考数学解答题......
在几何由经验上升为理论的过程中,一直存在不同的方式、方法和途径。一种以欧几里得《几何原本》为代表,它完全排除数量关系,单纯追求......
摘要:当前教育改革正以一种强势的脚步快速前进着,为我国的教育形式、教育观念、教育目标乃至教育体系的发展和完善,指明了方向,使教育......
转化是求解数学问题的一种十分重要的思想方法,也是立体几何解题中的常用策略。所谓转化,是指将复杂转化为简单,模糊转化为清晰,未......
我们知道,解析几何中许多习题由于运算要求较高,解题思维灵活,易出现各种各样的错误.这就要求我们必须掌握一些常用的解题策略,以提高解......
在普通高中(必修)第二册(下B)及新课程标准选修2—1定义平面的法向量是:如果向量n⊥α,那么向量n叫做平面α的一个法向量.课本给出这个概......